질문이있다? TensorFlow 포럼 에서 커뮤니티와 연결

# tf.linalg.eig

Computes the eigen decomposition of a batch of matrices.

The eigenvalues and eigenvectors for a non-Hermitian matrix in general are complex. The eigenvectors are not guaranteed to be linearly independent.

Computes the eigenvalues and right eigenvectors of the innermost N-by-N matrices in `tensor` such that `tensor[...,:,:] * v[..., :,i] = e[..., i] * v[...,:,i]`, for i=0...N-1.

`tensor` `Tensor` of shape `[..., N, N]`. Only the lower triangular part of each inner inner matrix is referenced.
`name` string, optional name of the operation.

`e` Eigenvalues. Shape is `[..., N]`. Sorted in non-decreasing order.
`v` Eigenvectors. Shape is `[..., N, N]`. The columns of the inner most matrices contain eigenvectors of the corresponding matrices in `tensor`

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"필요한 정보가 없음" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"너무 복잡함/단계 수가 너무 많음" },{ "type": "thumb-down", "id": "outOfDate", "label":"오래됨" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"기타" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"이해하기 쉬움" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"문제가 해결됨" },{ "type": "thumb-up", "id": "otherUp", "label":"기타" }]