A continuación se describe la semántica de las operaciones definidas en la interfaz XlaBuilder
. Normalmente, estas operaciones se asignan uno a uno a las operaciones definidas en la interfaz RPC en xla_data.proto
.
Una nota sobre la nomenclatura: el tipo de datos generalizado que trata XLA es una matriz N-dimensional que contiene elementos de algún tipo uniforme (como un flotante de 32 bits). En toda la documentación, matriz se utiliza para indicar una matriz de dimensiones arbitrarias. Por conveniencia, los casos especiales tienen nombres más específicos y familiares; por ejemplo, un vector es una matriz unidimensional y una matriz es una matriz bidimensional.
Después de todo
Véase también XlaBuilder::AfterAll
.
AfterAll toma una cantidad variable de tokens y produce un solo token. Los tokens son tipos primitivos que se pueden interconectar entre operaciones de efectos secundarios para hacer cumplir los pedidos. AfterAll
se puede utilizar como una combinación de tokens para ordenar una operación después de un conjunto de operaciones.
AfterAll(operands)
Argumentos | Tipo | Semántica |
---|---|---|
operands | XlaOp | número variable de tokens |
Todos reunidos
Véase también XlaBuilder::AllGather
.
Realiza concatenación entre réplicas.
AllGather(operand, all_gather_dim, shard_count, replica_group_ids, channel_id)
Argumentos | Tipo | Semántica |
---|---|---|
operand | XlaOp | Matriz para concatenar entre réplicas. |
all_gather_dim | int64 | Dimensión de concatenación. |
shard_count | int64 | Tamaño de cada grupo de réplicas. |
replica_groups | vector de vectores de int64 | Grupos entre los que se realiza la concatenación. |
channel_id | int64 opcional | ID de canal opcional para comunicación entre módulos. |
-
replica_groups
es una lista de grupos de réplicas entre los cuales se realiza la concatenación (la identificación de réplica de la réplica actual se puede recuperar usandoReplicaId
). El orden de las réplicas en cada grupo determina el orden en que se ubican sus entradas en el resultado.replica_groups
debe estar vacío (en cuyo caso todas las réplicas pertenecen a un solo grupo, ordenado de0
aN - 1
) o contener la misma cantidad de elementos que la cantidad de réplicas. Por ejemplo,replica_groups = {0, 2}, {1, 3}
realiza una concatenación entre las réplicas0
y2
y1
y3
. -
shard_count
es el tamaño de cada grupo de réplicas. Necesitamos esto en los casos en quereplica_groups
estén vacíos. -
channel_id
se utiliza para la comunicación entre módulos: solo las operacionesall-gather
con el mismochannel_id
pueden comunicarse entre sí.
La forma de salida es la forma de entrada con all_gather_dim
hecho shard_count
veces más grande. Por ejemplo, si hay dos réplicas y el operando tiene el valor [1.0, 2.5]
y [3.0, 5.25]
respectivamente en las dos réplicas, entonces el valor de salida de esta operación donde all_gather_dim
es 0
será [1.0, 2.5, 3.0, 5.25]
en ambas réplicas.
TodoReducir
Véase también XlaBuilder::AllReduce
.
Realiza un cálculo personalizado entre réplicas.
AllReduce(operand, computation, replica_group_ids, channel_id)
Argumentos | Tipo | Semántica |
---|---|---|
operand | XlaOp | Matriz o tupla de matrices no vacía para reducir entre réplicas. |
computation | XlaComputation | Cálculo de reducción |
replica_groups | vector de vectores de int64 | Grupos entre los que se realizan las reducciones |
channel_id | int64 opcional | ID de canal opcional para comunicación entre módulos |
- Cuando
operand
es una tupla de matrices, la reducción total se realiza en cada elemento de la tupla. -
replica_groups
es una lista de grupos de réplicas entre los cuales se realiza la reducción (la identificación de réplica de la réplica actual se puede recuperar usandoReplicaId
).replica_groups
debe estar vacío (en cuyo caso todas las réplicas pertenecen a un solo grupo) o contener la misma cantidad de elementos que la cantidad de réplicas. Por ejemplo,replica_groups = {0, 2}, {1, 3}
realiza una reducción entre las réplicas0
y2
y1
y3
. -
channel_id
se utiliza para la comunicación entre módulos: solo las operacionesall-reduce
con el mismochannel_id
pueden comunicarse entre sí.
La forma de salida es la misma que la forma de entrada. Por ejemplo, si hay dos réplicas y el operando tiene el valor [1.0, 2.5]
y [3.0, 5.25]
respectivamente en las dos réplicas, entonces el valor de salida de esta operación y cálculo de suma será [4.0, 7.75]
en ambas. réplicas. Si la entrada es una tupla, la salida también es una tupla.
Calcular el resultado de AllReduce
requiere tener una entrada de cada réplica, por lo que si una réplica ejecuta un nodo AllReduce
más veces que otra, entonces la réplica anterior esperará para siempre. Dado que todas las réplicas ejecutan el mismo programa, no hay muchas formas de que eso suceda, pero es posible cuando la condición de un bucle while depende de los datos de la alimentación y los datos que se introducen hacen que el bucle while se repita más veces. en una réplica que en otra.
Todos a todos
Consulte también XlaBuilder::AllToAll
.
AllToAll es una operación colectiva que envía datos de todos los núcleos a todos los núcleos. Tiene dos fases:
- La fase de dispersión. En cada núcleo, el operando se divide en un número de bloques
split_count
a lo largo desplit_dimensions
, y los bloques se distribuyen en todos los núcleos, por ejemplo, el i-ésimo bloque se envía al i-ésimo núcleo. - La fase de reunión. Cada núcleo concatena los bloques recibidos a lo largo de
concat_dimension
.
Los núcleos participantes se pueden configurar mediante:
-
replica_groups
: cada ReplicaGroup contiene una lista de ID de réplica que participan en el cálculo (el ID de réplica de la réplica actual se puede recuperar usandoReplicaId
). AllToAll se aplicará dentro de los subgrupos en el orden especificado. Por ejemplo,replica_groups = { {1,2,3}, {4,5,0} }
significa que se aplicará un AllToAll dentro de las réplicas{1, 2, 3}
y en la fase de recopilación, y los bloques recibidos se se concatenarán en el mismo orden de 1, 2, 3. Luego, se aplicará otro AllToAll dentro de las réplicas 4, 5, 0, y el orden de concatenación también es 4, 5, 0. Sireplica_groups
está vacío, todas las réplicas pertenecen a una grupo, en el orden de concatenación de su aparición.
Requisitos previos:
- El tamaño de la dimensión del operando en
split_dimension
es divisible porsplit_count
. - La forma del operando no es tupla.
AllToAll(operand, split_dimension, concat_dimension, split_count, replica_groups)
Argumentos | Tipo | Semántica |
---|---|---|
operand | XlaOp | matriz de entrada de n dimensiones |
split_dimension | int64 | Un valor en el intervalo [0, n) que nombra la dimensión a lo largo de la cual se divide el operando |
concat_dimension | int64 | un valor en el intervalo [0, n) que nombra la dimensión a lo largo de la cual se concatenan los bloques divididos |
split_count | int64 | el número de núcleos que participan en esta operación. Si replica_groups está vacío, este debería ser el número de réplicas; de lo contrario, debería ser igual al número de réplicas en cada grupo. |
replica_groups | Vector ReplicaGroup | Cada grupo contiene una lista de ID de réplica. |
A continuación se muestra un ejemplo de Alltoall.
XlaBuilder b("alltoall");
auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4, 16}), "x");
AllToAll(x, /*split_dimension=*/1, /*concat_dimension=*/0, /*split_count=*/4);

En este ejemplo, hay 4 núcleos que participan en Alltoall. En cada núcleo, el operando se divide en 4 partes a lo largo de la dimensión 1, por lo que cada parte tiene la forma f32[4,4]. Las 4 partes están repartidas en todos los núcleos. Luego, cada núcleo concatena las partes recibidas a lo largo de la dimensión 0, en el orden del núcleo 0-4. Entonces la salida de cada núcleo tiene la forma f32[16,4].
Graduación de norma por lotes
Consulte también XlaBuilder::BatchNormGrad
y el documento de normalización de lotes original para obtener una descripción detallada del algoritmo.
Calcula los gradientes de la norma del lote.
BatchNormGrad(operand, scale, mean, variance, grad_output, epsilon, feature_index)
Argumentos | Tipo | Semántica |
---|---|---|
operand | XlaOp | Matriz de n dimensiones a normalizar (x) |
scale | XlaOp | Matriz unidimensional (\(\gamma\)) |
mean | XlaOp | Matriz unidimensional (\(\mu\)) |
variance | XlaOp | Matriz unidimensional (\(\sigma^2\)) |
grad_output | XlaOp | Los gradientes pasaron a BatchNormTraining (\( \nabla y\)) |
epsilon | float | Valor de épsilon (\(\epsilon\)) |
feature_index | int64 | Índice de dimensión de característica en operand |
Para cada característica en la dimensión de la característica ( feature_index
es el índice de la dimensión de la característica en operand
), la operación calcula los gradientes con respecto al operand
, offset
y scale
en todas las demás dimensiones. feature_index
debe ser un índice válido para la dimensión de característica en operand
.
Los tres gradientes se definen mediante las siguientes fórmulas (asumiendo una matriz de 4 dimensiones como operand
y con índice de dimensión de característica l
, tamaño de lote m
y tamaños espaciales w
y h
):
\[ \begin{split} c_l&= \frac{1}{mwh}\sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h \left( \nabla y_{ijkl} \frac{x_{ijkl} - \mu_l}{\sigma^2_l+\epsilon} \right) \\\\ d_l&= \frac{1}{mwh}\sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h \nabla y_{ijkl} \\\\ \nabla x_{ijkl} &= \frac{\gamma_{l} }{\sqrt{\sigma^2_{l}+\epsilon} } \left( \nabla y_{ijkl} - d_l - c_l (x_{ijkl} - \mu_{l}) \right) \\\\ \nabla \gamma_l &= \sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h \left( \nabla y_{ijkl} \frac{x_{ijkl} - \mu_l}{\sqrt{\sigma^2_{l}+\epsilon} } \right) \\\\\ \nabla \beta_l &= \sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h \nabla y_{ijkl} \end{split} \]
La mean
y variance
de las entradas representan el valor de los momentos en las dimensiones espaciales y de lote.
El tipo de salida es una tupla de tres identificadores:
Salidas | Tipo | Semántica |
---|---|---|
grad_operand | XlaOp | gradiente con respecto al operand de entrada (\( \nabla x\)) |
grad_scale | XlaOp | gradiente con respecto a scale de entrada (\( \nabla \gamma\)) |
grad_offset | XlaOp | gradiente con respecto al offset de entrada (\( \nabla \beta\)) |
Inferencia de norma por lotes
Consulte también XlaBuilder::BatchNormInference
y el documento de normalización de lotes original para obtener una descripción detallada del algoritmo.
Normaliza una matriz en dimensiones espaciales y por lotes.
BatchNormInference(operand, scale, offset, mean, variance, epsilon, feature_index)
Argumentos | Tipo | Semántica |
---|---|---|
operand | XlaOp | Matriz de n dimensiones a normalizar |
scale | XlaOp | matriz unidimensional |
offset | XlaOp | matriz unidimensional |
mean | XlaOp | matriz unidimensional |
variance | XlaOp | matriz unidimensional |
epsilon | float | valor épsilon |
feature_index | int64 | Índice de dimensión de característica en operand |
Para cada característica en la dimensión de característica ( feature_index
es el índice de la dimensión de característica en operand
), la operación calcula la media y la varianza en todas las demás dimensiones y usa la media y la varianza para normalizar cada elemento en operand
. feature_index
debe ser un índice válido para la dimensión de característica en operand
.
BatchNormInference
equivale a llamar BatchNormTraining
sin calcular mean
y variance
de cada lote. En su lugar, utiliza la mean
y variance
de entrada como valores estimados. El propósito de esta operación es reducir la latencia en la inferencia, de ahí el nombre BatchNormInference
.
La salida es una matriz normalizada de n dimensiones con la misma forma que operand
de entrada.
Entrenamiento de normas por lotes
Consulte también XlaBuilder::BatchNormTraining
y the original batch normalization paper
para obtener una descripción detallada del algoritmo.
Normaliza una matriz en dimensiones espaciales y por lotes.
BatchNormTraining(operand, scale, offset, epsilon, feature_index)
Argumentos | Tipo | Semántica |
---|---|---|
operand | XlaOp | Matriz de n dimensiones a normalizar (x) |
scale | XlaOp | Matriz unidimensional (\(\gamma\)) |
offset | XlaOp | Matriz unidimensional (\(\beta\)) |
epsilon | float | Valor de épsilon (\(\epsilon\)) |
feature_index | int64 | Índice de dimensión de característica en operand |
Para cada característica en la dimensión de característica ( feature_index
es el índice de la dimensión de característica en operand
), la operación calcula la media y la varianza en todas las demás dimensiones y usa la media y la varianza para normalizar cada elemento en operand
. feature_index
debe ser un índice válido para la dimensión de característica en operand
.
El algoritmo es el siguiente para cada lote en operand
\(x\) que contiene m
elementos con w
y h
como tamaño de dimensiones espaciales (asumiendo que operand
es una matriz de 4 dimensiones):
Calcula la media del lote \(\mu_l\) para cada característica
l
en la dimensión de la característica:\(\mu_l=\frac{1}{mwh}\sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h x_{ijkl}\)Calcula la variación del lote \(\sigma^2_l\):\(\sigma^2_l=\frac{1}{mwh}\sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h (x_{ijkl} - \mu_l)^2\)
Normaliza, escala y cambia:\(y_{ijkl}=\frac{\gamma_l(x_{ijkl}-\mu_l)}{\sqrt[2]{\sigma^2_l+\epsilon} }+\beta_l\)
El valor épsilon, normalmente un número pequeño, se suma para evitar errores de división por cero.
El tipo de salida es una tupla de tres XlaOp
s:
Salidas | Tipo | Semántica |
---|---|---|
output | XlaOp | Matriz de n dimensiones con la misma forma que operand de entrada (y) |
batch_mean | XlaOp | Matriz unidimensional (\(\mu\)) |
batch_var | XlaOp | Matriz unidimensional (\(\sigma^2\)) |
batch_mean
y batch_var
son momentos calculados en las dimensiones espaciales y de lote utilizando las fórmulas anteriores.
Tipo de conversión de Bitcast
Consulte también XlaBuilder::BitcastConvertType
.
Similar a un tf.bitcast
en TensorFlow, realiza una operación de difusión de bits por elementos desde una forma de datos a una forma de destino. El tamaño de entrada y salida debe coincidir: por ejemplo, los elementos s32
se convierten en elementos f32
mediante la rutina bitcast y un elemento s32
se convertirá en cuatro elementos s8
. Bitcast se implementa como una conversión de bajo nivel, por lo que las máquinas con diferentes representaciones de punto flotante darán resultados diferentes.
BitcastConvertType(operand, new_element_type)
Argumentos | Tipo | Semántica |
---|---|---|
operand | XlaOp | matriz de tipo T con atenuaciones D |
new_element_type | PrimitiveType | tipo U |
Las dimensiones del operando y la forma objetivo deben coincidir, excepto la última dimensión que cambiará según la relación del tamaño primitivo antes y después de la conversión.
Los tipos de elementos de origen y destino no deben ser tuplas.
Conversión de Bitcast a tipo primitivo de diferente ancho
La instrucción BitcastConvert
HLO admite el caso en el que el tamaño del elemento de salida tipo T'
no es igual al tamaño del elemento de entrada T
Como toda la operación es conceptualmente un bitcast y no cambia los bytes subyacentes, la forma del elemento de salida tiene que cambiar. Para B = sizeof(T), B' = sizeof(T')
, hay dos casos posibles.
Primero, cuando B > B'
, la forma de salida obtiene una nueva dimensión menor de tamaño B/B'
. Por ejemplo:
f16[10,2]{1,0} %output = f16[10,2]{1,0} bitcast-convert(f32[10]{0} %input)
La regla sigue siendo la misma para los escalares efectivos:
f16[2]{0} %output = f16[2]{0} bitcast-convert(f32[] %input)
Alternativamente, para B' > B
la instrucción requiere que la última dimensión lógica de la forma de entrada sea igual a B'/B
y esta dimensión se elimina durante la conversión:
f32[10]{0} %output = f32[10]{0} bitcast-convert(f16[10,2]{1,0} %input)
Tenga en cuenta que las conversiones entre diferentes anchos de bits no se realizan por elementos.
Transmisión
Consulte también XlaBuilder::Broadcast
.
Agrega dimensiones a una matriz duplicando los datos de la matriz.
Broadcast(operand, broadcast_sizes)
Argumentos | Tipo | Semántica |
---|---|---|
operand | XlaOp | La matriz a duplicar |
broadcast_sizes | ArraySlice<int64> | Los tamaños de las nuevas dimensiones. |
Las nuevas dimensiones se insertan a la izquierda, es decir, si broadcast_sizes
tiene valores {a0, ..., aN}
y la forma del operando tiene dimensiones {b0, ..., bM}
entonces la forma de la salida tiene dimensiones {a0, ..., aN, b0, ..., bM}
.
Las nuevas dimensiones se indexan en copias del operando, es decir
output[i0, ..., iN, j0, ..., jM] = operand[j0, ..., jM]
Por ejemplo, si operand
es un escalar f32
con valor 2.0f
y broadcast_sizes
es {2, 3}
, entonces el resultado será una matriz con forma f32[2, 3]
y todos los valores del resultado serán 2.0f
.
Transmisión en intensidad
Consulte también XlaBuilder::BroadcastInDim
.
Expande el tamaño y la clasificación de una matriz duplicando los datos de la matriz.
BroadcastInDim(operand, out_dim_size, broadcast_dimensions)
Argumentos | Tipo | Semántica |
---|---|---|
operand | XlaOp | La matriz a duplicar |
out_dim_size | ArraySlice<int64> | Los tamaños de las dimensiones de la forma objetivo. |
broadcast_dimensions | ArraySlice<int64> | ¿A qué dimensión en la forma objetivo corresponde cada dimensión de la forma del operando? |
Similar a Broadcast, pero permite agregar dimensiones en cualquier lugar y expandir las dimensiones existentes con tamaño 1.
El operand
se transmite a la forma descrita por out_dim_size
. broadcast_dimensions
asigna las dimensiones del operand
a las dimensiones de la forma de destino, es decir, la i-ésima dimensión del operando se asigna a la broadcast_dimension[i]'ésima dimensión de la forma de salida. Las dimensiones del operand
deben tener tamaño 1 o ser del mismo tamaño que la dimensión en la forma de salida a la que están asignadas. Las dimensiones restantes se llenan con dimensiones de tamaño 1. La transmisión de dimensiones degeneradas luego transmite a lo largo de estas dimensiones degeneradas para alcanzar la forma de salida. La semántica se describe en detalle en la página de transmisión .
Llamar
Consulte también XlaBuilder::Call
.
Invoca un cálculo con los argumentos dados.
Call(computation, args...)
Argumentos | Tipo | Semántica |
---|---|---|
computation | XlaComputation | cálculo de tipo T_0, T_1, ..., T_{N-1} -> S con N parámetros de tipo arbitrario |
args | secuencia de N XlaOp s | N argumentos de tipo arbitrario |
La aridad y los tipos de los args
deben coincidir con los parámetros del computation
. Se permite no tener args
.
cholesky
Véase también XlaBuilder::Cholesky
.
Calcula la descomposición de Cholesky de un lote de matrices definidas positivas simétricas (hermitianas).
Cholesky(a, lower)
Argumentos | Tipo | Semántica |
---|---|---|
a | XlaOp | una matriz de rango > 2 de tipo complejo o de punto flotante. |
lower | bool | si usar el triángulo superior o inferior de a . |
Si lower
es true
, calcula matrices triangulares inferiores l
tales que \( a = l
. l^T \). Si lower
es false
, calcula matrices triangulares superiores u
tales que \( a = u^T . u \).
Los datos de entrada se leen solo desde el triángulo inferior/superior de a
, dependiendo del valor de lower
. Se ignoran los valores del otro triángulo. Los datos de salida se devuelven en el mismo triángulo; los valores en el otro triángulo están definidos por la implementación y pueden ser cualquier cosa.
Si el rango de a
es mayor que 2, a
se trata como un lote de matrices, donde todas, excepto las 2 dimensiones menores, son dimensiones de lote.
Si a
no es definida positiva simétrica (hermitiana), el resultado está definido por la implementación.
Abrazadera
Consulte también XlaBuilder::Clamp
.
Fija un operando dentro del rango entre un valor mínimo y máximo.
Clamp(min, operand, max)
Argumentos | Tipo | Semántica |
---|---|---|
min | XlaOp | matriz de tipo T |
operand | XlaOp | matriz de tipo T |
max | XlaOp | matriz de tipo T |
Dado un operando y los valores mínimo y máximo, devuelve el operando si está en el rango entre el mínimo y el máximo; en caso contrario, devuelve el valor mínimo si el operando está por debajo de este rango o el valor máximo si el operando está por encima de este rango. Es decir, clamp(a, x, b) = min(max(a, x), b)
.
Las tres matrices deben tener la misma forma. Alternativamente, como forma restringida de transmisión , min
y/o max
pueden ser un escalar de tipo T
Ejemplo con escalar min
y max
:
let operand: s32[3] = {-1, 5, 9};
let min: s32 = 0;
let max: s32 = 6;
==>
Clamp(min, operand, max) = s32[3]{0, 5, 6};
Colapsar
Consulte también XlaBuilder::Collapse
y la operación tf.reshape
.
Contrae las dimensiones de una matriz en una dimensión.
Collapse(operand, dimensions)
Argumentos | Tipo | Semántica |
---|---|---|
operand | XlaOp | matriz de tipo T |
dimensions | vector int64 | subconjunto consecutivo en orden de las dimensiones de T. |
Contraer reemplaza el subconjunto dado de dimensiones del operando por una única dimensión. Los argumentos de entrada son una matriz arbitraria de tipo T y un vector de índices de dimensión constante en tiempo de compilación. Los índices de dimensión deben ser un subconjunto consecutivo en orden (números de dimensión de menor a mayor) de las dimensiones de T. Por lo tanto, {0, 1, 2}, {0, 1} o {1, 2} son todos conjuntos de dimensiones válidos, pero {1, 0} o {0, 2} no lo son. Se reemplazan por una única dimensión nueva, en la misma posición en la secuencia de dimensiones que las que reemplazan, con el nuevo tamaño de dimensión igual al producto de los tamaños de dimensión originales. El número de dimensión más bajo en dimensions
es la dimensión que varía más lentamente (la más importante) en el nido de bucle que colapsa estas dimensiones, y el número de dimensión más alto es la que varía más rápidamente (la más menor). Consulte el operador tf.reshape
si necesita un orden de colapso más general.
Por ejemplo, sea v una matriz de 24 elementos:
let v = f32[4x2x3] { { {10, 11, 12}, {15, 16, 17} },
{ {20, 21, 22}, {25, 26, 27} },
{ {30, 31, 32}, {35, 36, 37} },
{ {40, 41, 42}, {45, 46, 47} } };
// Collapse to a single dimension, leaving one dimension.
let v012 = Collapse(v, {0,1,2});
then v012 == f32[24] {10, 11, 12, 15, 16, 17,
20, 21, 22, 25, 26, 27,
30, 31, 32, 35, 36, 37,
40, 41, 42, 45, 46, 47};
// Collapse the two lower dimensions, leaving two dimensions.
let v01 = Collapse(v, {0,1});
then v01 == f32[4x6] { {10, 11, 12, 15, 16, 17},
{20, 21, 22, 25, 26, 27},
{30, 31, 32, 35, 36, 37},
{40, 41, 42, 45, 46, 47} };
// Collapse the two higher dimensions, leaving two dimensions.
let v12 = Collapse(v, {1,2});
then v12 == f32[8x3] { {10, 11, 12},
{15, 16, 17},
{20, 21, 22},
{25, 26, 27},
{30, 31, 32},
{35, 36, 37},
{40, 41, 42},
{45, 46, 47} };
ColectivoPermutar
Véase también XlaBuilder::CollectivePermute
.
CollectivePermute es una operación colectiva que envía y recibe réplicas cruzadas de datos.
CollectivePermute(operand, source_target_pairs)
Argumentos | Tipo | Semántica |
---|---|---|
operand | XlaOp | matriz de entrada de n dimensiones |
source_target_pairs | <int64, int64> vector | Una lista de pares (source_replica_id, target_replica_id). Para cada par, el operando se envía desde la réplica de origen a la réplica de destino. |
Tenga en cuenta que existen las siguientes restricciones en source_target_pair
:
- Dos pares cualesquiera no deben tener el mismo ID de réplica de destino y no deben tener el mismo ID de réplica de origen.
- Si una identificación de réplica no es un objetivo en ningún par, entonces la salida de esa réplica es un tensor que consta de 0(s) con la misma forma que la entrada.
Concatenar
Consulte también XlaBuilder::ConcatInDim
.
Concatenar compone una matriz a partir de múltiples operandos de matriz. La matriz tiene el mismo rango que cada uno de los operandos de la matriz de entrada (que deben tener el mismo rango entre sí) y contiene los argumentos en el orden en que fueron especificados.
Concatenate(operands..., dimension)
Argumentos | Tipo | Semántica |
---|---|---|
operands | secuencia de N XlaOp | N arreglos de tipo T con dimensiones [L0, L1, ...]. Requiere N >= 1. |
dimension | int64 | Un valor en el intervalo [0, N) que nombra la dimensión que se concatenará entre los operands . |
A excepción de dimension
todas las dimensiones deben ser iguales. Esto se debe a que XLA no admite matrices "irregulares". Tenga en cuenta también que los valores de rango 0 no se pueden concatenar (ya que es imposible nombrar la dimensión a lo largo de la cual se produce la concatenación).
Ejemplo unidimensional:
Concat({ {2, 3}, {4, 5}, {6, 7} }, 0)
>>> {2, 3, 4, 5, 6, 7}
Ejemplo bidimensional:
let a = {
{1, 2},
{3, 4},
{5, 6},
};
let b = {
{7, 8},
};
Concat({a, b}, 0)
>>> {
{1, 2},
{3, 4},
{5, 6},
{7, 8},
}
Diagrama:

Condicional
Consulte también XlaBuilder::Conditional
.
Conditional(pred, true_operand, true_computation, false_operand, false_computation)
Argumentos | Tipo | Semántica |
---|---|---|
pred | XlaOp | Escalar de tipo PRED |
true_operand | XlaOp | Argumento de tipo \(T_0\) |
true_computation | XlaComputation | XlaCálculo del tipo \(T_0 \to S\) |
false_operand | XlaOp | Argumento de tipo \(T_1\) |
false_computation | XlaComputation | XlaCálculo del tipo \(T_1 \to S\) |
Ejecuta true_computation
si pred
es true
, false_computation
si pred
es false
y devuelve el resultado.
true_computation
debe aceptar un único argumento de tipo \(T_0\) y se invocará con true_operand
, que debe ser del mismo tipo. El false_computation
debe aceptar un único argumento de tipo \(T_1\) y se invocará con false_operand
que debe ser del mismo tipo. El tipo de valor devuelto de true_computation
y false_computation
debe ser el mismo.
Tenga en cuenta que solo se ejecutará uno de true_computation
y false_computation
dependiendo del valor de pred
.
Conditional(branch_index, branch_computations, branch_operands)
Argumentos | Tipo | Semántica |
---|---|---|
branch_index | XlaOp | Escalar de tipo S32 |
branch_computations | secuencia de N XlaComputation | XlaCálculos de tipo \( T_0 \to S , T_1 \to S , ..., T_{N-1} \to S \) |
branch_operands | secuencia de N XlaOp | Argumentos de tipo \( T_0 , T_1 , ..., T_{N-1} \) |
Ejecuta branch_computations[branch_index]
y devuelve el resultado. Si branch_index
es un S32
que es < 0 o >= N, entonces branch_computations[N-1]
se ejecuta como la rama predeterminada.
Cada branch_computations[b]
debe tomar un único argumento de tipo T_b
y será invocado con branch_operands[b]
que deben ser del mismo tipo. El tipo de valor devuelto de cada branch_computations[b]
debe ser el mismo.
Tenga en cuenta que solo se ejecutará uno de los branch_computations
dependiendo del valor de branch_index
.
Conv (convolución)
Véase también XlaBuilder::Conv
.
Como ConvWithGeneralPadding, pero el relleno se especifica de forma abreviada como SAME o VALID. El MISMO relleno rellena la entrada ( lhs
) con ceros para que la salida tenga la misma forma que la entrada cuando no se tienen en cuenta las zancadas. El relleno VÁLIDO simplemente significa que no hay relleno.
ConvWithGeneralPadding (convolución)
Consulte también XlaBuilder::ConvWithGeneralPadding
.
Calcula una convolución del tipo utilizado en las redes neuronales. Aquí, se puede considerar una convolución como una ventana de n dimensiones que se mueve a través de un área base de n dimensiones y se realiza un cálculo para cada posición posible de la ventana.
Argumentos | Tipo | Semántica |
---|---|---|
lhs | XlaOp | rango n+2 matriz de entradas |
rhs | XlaOp | rango n+2 conjunto de pesos de núcleo |
window_strides | ArraySlice<int64> | Segunda serie de avances del núcleo |
padding | ArraySlice< pair<int64, int64>> | Segunda serie de relleno (bajo, alto) |
lhs_dilation | ArraySlice<int64> | nd matriz de factores de dilatación lhs |
rhs_dilation | ArraySlice<int64> | matriz de factores de dilatación nd rhs |
feature_group_count | int64 | el número de grupos de características |
batch_group_count | int64 | el número de grupos de lotes |
Sea n el número de dimensiones espaciales. El argumento lhs
es una matriz de rango n+2 que describe el área base. Esto se llama entrada, aunque, por supuesto, el lado derecho también es una entrada. En una red neuronal, estas son las activaciones de entrada. Las n+2 dimensiones son, en este orden:
-
batch
: cada coordenada en esta dimensión representa una entrada independiente para la cual se realiza la convolución. -
z/depth/features
: Cada posición (y,x) en el área base tiene un vector asociado, que entra en esta dimensión. -
spatial_dims
: Describe lasn
dimensiones espaciales que definen el área base por la que se mueve la ventana.
El argumento rhs
es una matriz de rango n+2 que describe el filtro/núcleo/ventana convolucional. Las dimensiones son, en este orden:
-
output-z
: La dimensiónz
de la salida. -
input-z
: El tamaño de esta dimensión multiplicadofeature_group_count
debe ser igual al tamaño de la dimensiónz
en lhs. -
spatial_dims
: Describe lasn
dimensiones espaciales que definen la segunda ventana que se mueve a través del área base.
El argumento window_strides
especifica el paso de la ventana convolucional en las dimensiones espaciales. Por ejemplo, si el paso en la primera dimensión espacial es 3, entonces la ventana solo se puede colocar en las coordenadas donde el primer índice espacial es divisible por 3.
El argumento padding
especifica la cantidad de relleno de ceros que se aplicará al área base. La cantidad de relleno puede ser negativa: el valor absoluto del relleno negativo indica el número de elementos que se eliminarán de la dimensión especificada antes de realizar la convolución. padding[0]
especifica el relleno para la dimensión y
y padding[1]
especifica el relleno para la dimensión x
. Cada par tiene el relleno bajo como primer elemento y el relleno alto como segundo elemento. El relleno bajo se aplica en la dirección de los índices más bajos, mientras que el relleno alto se aplica en la dirección de los índices más altos. Por ejemplo, si padding[1]
es (2,3)
, habrá un relleno de 2 ceros a la izquierda y de 3 ceros a la derecha en la segunda dimensión espacial. Usar relleno equivale a insertar esos mismos valores cero en la entrada ( lhs
) antes de realizar la convolución.
Los argumentos lhs_dilation
y rhs_dilation
especifican el factor de dilatación que se aplicará a lhs y rhs, respectivamente, en cada dimensión espacial. Si el factor de dilatación en una dimensión espacial es d, entonces se colocan implícitamente d-1 agujeros entre cada una de las entradas en esa dimensión, aumentando el tamaño de la matriz. Los huecos se rellenan con un valor no operativo, que para convolución significa ceros.
La dilatación del rhs también se denomina convolución atroz. Para obtener más detalles, consulte tf.nn.atrous_conv2d
. La dilatación del lado izquierdo también se llama convolución transpuesta. Para obtener más detalles, consulte tf.nn.conv2d_transpose
.
El argumento feature_group_count
(valor predeterminado 1) se puede utilizar para convoluciones agrupadas. feature_group_count
debe ser un divisor de la dimensión de la característica de entrada y de salida. Si feature_group_count
es mayor que 1, significa que conceptualmente la dimensión de la característica de entrada y salida y la dimensión de la característica de salida rhs
se dividen uniformemente en muchos grupos feature_group_count
, cada grupo consta de una subsecuencia consecutiva de características. La dimensión de la característica de entrada de rhs
debe ser igual a la dimensión de la característica de entrada lhs
dividida por feature_group_count
(por lo que ya tiene el tamaño de un grupo de características de entrada). Los i-ésimos grupos se utilizan juntos para calcular feature_group_count
muchas convoluciones separadas. Los resultados de estas convoluciones se concatenan juntos en la dimensión de la característica de salida.
Para una convolución en profundidad, el argumento feature_group_count
se establecería en la dimensión de la característica de entrada y el filtro se reformaría de [filter_height, filter_width, in_channels, channel_multiplier]
a [filter_height, filter_width, 1, in_channels * channel_multiplier]
. Para obtener más detalles, consulte tf.nn.depthwise_conv2d
.
El argumento batch_group_count
(valor predeterminado 1) se puede utilizar para filtros agrupados durante la retropropagación. batch_group_count
debe ser un divisor del tamaño de la dimensión del lhs
izquierdo (entrada). Si batch_group_count
es mayor que 1, significa que la dimensión del lote de salida debe ser del tamaño input batch / batch_group_count
. batch_group_count
debe ser un divisor del tamaño de la característica de salida.
La forma de salida tiene estas dimensiones, en este orden:
-
batch
: el tamaño de esta dimensión multiplicadobatch_group_count
debe ser igual al tamaño de la dimensiónbatch
en lhs. -
z
: Mismo tamaño queoutput-z
en el kernel (rhs
). -
spatial_dims
: un valor para cada ubicación válida de la ventana convolucional.
La figura anterior muestra cómo funciona el campo batch_group_count
. Efectivamente, dividimos cada lote de lhs en grupos batch_group_count
grupos de lotes y hacemos lo mismo con las funciones de salida. Luego, para cada uno de estos grupos hacemos convoluciones por pares y concatenamos la salida a lo largo de la dimensión de la característica de salida. La semántica operativa de todas las demás dimensiones (característica y espacial) sigue siendo la misma.
Las ubicaciones válidas de la ventana convolucional están determinadas por los pasos y el tamaño del área base después del relleno.
Para describir lo que hace una convolución, considere una convolución 2d y elija algunas coordenadas batch
fijas, z
, y
, x
en la salida. Entonces (y,x)
es la posición de una esquina de la ventana dentro del área base (por ejemplo, la esquina superior izquierda, dependiendo de cómo interprete las dimensiones espaciales). Ahora tenemos una ventana 2D, tomada del área base, donde cada punto 2D está asociado a un vector 1D, por lo que obtenemos un cuadro 3D. Desde el núcleo convolucional, dado que fijamos la coordenada de salida z
, también tenemos un cuadro 3d. Los dos cuadros tienen las mismas dimensiones, por lo que podemos tomar la suma de los productos de elementos entre los dos cuadros (similar a un producto escalar). Ese es el valor de salida.
Tenga en cuenta que si output-z
es, por ejemplo, 5, entonces cada posición de la ventana produce 5 valores en la salida en la dimensión z
de la salida. Estos valores difieren en la parte del núcleo convolucional que se utiliza: hay un cuadro 3D separado de valores que se utiliza para cada coordenada output-z
. Entonces podrías considerarlo como 5 convoluciones separadas con un filtro diferente para cada una de ellas.
Aquí hay un pseudocódigo para una convolución 2D con relleno y zancadas:
for (b, oz, oy, ox) { // output coordinates
value = 0;
for (iz, ky, kx) { // kernel coordinates and input z
iy = oy*stride_y + ky - pad_low_y;
ix = ox*stride_x + kx - pad_low_x;
if ((iy, ix) inside the base area considered without padding) {
value += input(b, iz, iy, ix) * kernel(oz, iz, ky, kx);
}
}
output(b, oz, oy, ox) = value;
}
Convertir tipo de elemento
Consulte también XlaBuilder::ConvertElementType
.
Similar a un static_cast
por elementos en C++, realiza una operación de conversión por elementos de una forma de datos a una forma de destino. Las dimensiones deben coincidir y la conversión se realiza por elementos; por ejemplo, los elementos s32
se convierten en elementos f32
mediante una rutina de conversión s32
a f32
.
ConvertElementType(operand, new_element_type)
Argumentos | Tipo | Semántica |
---|---|---|
operand | XlaOp | matriz de tipo T con atenuaciones D |
new_element_type | PrimitiveType | tipo U |
Las dimensiones del operando y la forma objetivo deben coincidir. Los tipos de elementos de origen y destino no deben ser tuplas.
Una conversión como T=s32
a U=f32
realizará una rutina de normalización de conversión de int a flotante, como redondear a par más cercano.
let a: s32[3] = {0, 1, 2};
let b: f32[3] = convert(a, f32);
then b == f32[3]{0.0, 1.0, 2.0}
CruzReplicaSum
Realiza AllReduce
con un cálculo de suma.
Llamada personalizada
Consulte también XlaBuilder::CustomCall
.
Llame a una función proporcionada por el usuario dentro de un cálculo.
CustomCall(target_name, args..., shape)
Argumentos | Tipo | Semántica |
---|---|---|
target_name | string | Nombre de la función. Se emitirá una instrucción de llamada dirigida a este nombre de símbolo. |
args | secuencia de N XlaOp s | N argumentos de tipo arbitrario, que se pasarán a la función. |
shape | Shape | Forma de salida de la función. |
La firma de la función es la misma, independientemente de la aridad o el tipo de argumentos:
extern "C" void target_name(void* out, void** in);
Por ejemplo, si CustomCall se utiliza de la siguiente manera:
let x = f32[2] {1,2};
let y = f32[2x3] { {10, 20, 30}, {40, 50, 60} };
CustomCall("myfunc", {x, y}, f32[3x3])
A continuación se muestra un ejemplo de una implementación de myfunc
:
extern "C" void myfunc(void* out, void** in) {
float (&x)[2] = *static_cast<float(*)[2]>(in[0]);
float (&y)[2][3] = *static_cast<float(*)[2][3]>(in[1]);
EXPECT_EQ(1, x[0]);
EXPECT_EQ(2, x[1]);
EXPECT_EQ(10, y[0][0]);
EXPECT_EQ(20, y[0][1]);
EXPECT_EQ(30, y[0][2]);
EXPECT_EQ(40, y[1][0]);
EXPECT_EQ(50, y[1][1]);
EXPECT_EQ(60, y[1][2]);
float (&z)[3][3] = *static_cast<float(*)[3][3]>(out);
z[0][0] = x[1] + y[1][0];
// ...
}
La función proporcionada por el usuario no debe tener efectos secundarios y su ejecución debe ser idempotente.
Punto
Véase también XlaBuilder::Dot
.
Dot(lhs, rhs)
Argumentos | Tipo | Semántica |
---|---|---|
lhs | XlaOp | matriz de tipo T |
rhs | XlaOp | matriz de tipo T |
La semántica exacta de esta operación depende de los rangos de los operandos:
Aporte | Producción | Semántica |
---|---|---|
vector [n] vector dot [n] | escalar | producto escalar vectorial |
matriz [mxk] vector dot [k] | vector [m] | multiplicación de matriz-vector |
matriz [mxk] matriz dot [kxn] | matriz [mxn] | multiplicación matriz-matriz |
La operación realiza suma de productos sobre la segunda dimensión de lhs
(o la primera si tiene rango 1) y la primera dimensión de rhs
. Estas son las dimensiones "contraídas". Las dimensiones contratadas de lhs
y rhs
deben ser del mismo tamaño. En la práctica, se puede utilizar para realizar productos escalares entre vectores, multiplicaciones de vector/matriz o multiplicaciones de matriz/matriz.
PuntoGeneral
Véase también XlaBuilder::DotGeneral
.
DotGeneral(lhs, rhs, dimension_numbers)
Argumentos | Tipo | Semántica |
---|---|---|
lhs | XlaOp | matriz de tipo T |
rhs | XlaOp | matriz de tipo T |
dimension_numbers | DotDimensionNumbers | números de dimensión de lote y contratación |
Como Dot, pero permite especificar números de dimensión de lote y de contratación tanto para el 'izquierdo' como para el 'derecho'.
Campos de números de dimensión de punto | Tipo | Semántica |
---|---|---|
'lhs_contratación_dimensiones' | repetido int64 | números de dimensión de contracción 'lhs' |
'rhs_contratación_dimensiones' | repetido int64 | números de dimensión de contracción 'rhs' |
'lhs_batch_dimensiones' | repetido int64 | números de dimensiones de lote 'lhs' |
'rhs_batch_dimensiones' | repetido int64 | números de dimensiones de lote 'rhs' |
DotGeneral realiza la suma de productos sobre las dimensiones de contratación especificadas en 'dimension_numbers'.
Los números de dimensión de contratación asociados de 'izquierdo' y 'derecho' no necesitan ser los mismos, pero deben tener los mismos tamaños de dimensión.
Ejemplo con números de dimensión en contracción:
lhs = { {1.0, 2.0, 3.0},
{4.0, 5.0, 6.0} }
rhs = { {1.0, 1.0, 1.0},
{2.0, 2.0, 2.0} }
DotDimensionNumbers dnums;
dnums.add_lhs_contracting_dimensions(1);
dnums.add_rhs_contracting_dimensions(1);
DotGeneral(lhs, rhs, dnums) -> { {6.0, 12.0},
{15.0, 30.0} }
Los números de dimensión de lote asociados de 'lhs' y 'rhs' deben tener los mismos tamaños de dimensión.
Ejemplo con números de dimensiones de lote (tamaño de lote 2, matrices de 2x2):
lhs = { { {1.0, 2.0},
{3.0, 4.0} },
{ {5.0, 6.0},
{7.0, 8.0} } }
rhs = { { {1.0, 0.0},
{0.0, 1.0} },
{ {1.0, 0.0},
{0.0, 1.0} } }
DotDimensionNumbers dnums;
dnums.add_lhs_contracting_dimensions(2);
dnums.add_rhs_contracting_dimensions(1);
dnums.add_lhs_batch_dimensions(0);
dnums.add_rhs_batch_dimensions(0);
DotGeneral(lhs, rhs, dnums) -> { { {1.0, 2.0},
{3.0, 4.0} },
{ {5.0, 6.0},
{7.0, 8.0} } }
Aporte | Producción | Semántica |
---|---|---|
[b0, m, k] dot [b0, k, n] | [b0,m,n] | matmul por lotes |
[b0, b1, m, k] dot [b0, b1, k, n] | [b0, b1, m, n] | matmul por lotes |
De ello se deduce que el número de dimensión resultante comienza con la dimensión de lote, luego la dimensión 'lhs' no contractual/no de lote y, finalmente, la dimensión 'rhs' no contractual/no de lote.
Rebanada dinámica
Consulte también XlaBuilder::DynamicSlice
.
DynamicSlice extrae una submatriz de la matriz de entrada en Dynamic start_indices
. El tamaño del segmento en cada dimensión se pasa en size_indices
, que especifica el punto final de los intervalos de segmento exclusivos en cada dimensión: [inicio, inicio + tamaño). La forma de start_indices
debe tener rango == 1, con un tamaño de dimensión igual al rango del operand
.
DynamicSlice(operand, start_indices, size_indices)
Argumentos | Tipo | Semántica |
---|---|---|
operand | XlaOp | Matriz N dimensional de tipo T |
start_indices | secuencia de N XlaOp | List of N scalar integers containing the starting indices of the slice for each dimension. Value must be greater than or equal to zero. |
size_indices | ArraySlice<int64> | List of N integers containing the slice size for each dimension. Each value must be strictly greater than zero, and start + size must be less than or equal to the size of the dimension to avoid wrapping modulo dimension size. |
The effective slice indices are computed by applying the following transformation for each index i
in [1, N)
before performing the slice:
start_indices[i] = clamp(start_indices[i], 0, operand.dimension_size[i] - size_indices[i])
This ensures that the extracted slice is always in-bounds with respect to the operand array. If the slice is in-bounds before the transformation is applied, the transformation has no effect.
1-dimensional example:
let a = {0.0, 1.0, 2.0, 3.0, 4.0}
let s = {2}
DynamicSlice(a, s, {2}) produces:
{2.0, 3.0}
2-dimensional example:
let b =
{ {0.0, 1.0, 2.0},
{3.0, 4.0, 5.0},
{6.0, 7.0, 8.0},
{9.0, 10.0, 11.0} }
let s = {2, 1}
DynamicSlice(b, s, {2, 2}) produces:
{ { 7.0, 8.0},
{10.0, 11.0} }
DynamicUpdateSlice
See also XlaBuilder::DynamicUpdateSlice
.
DynamicUpdateSlice generates a result which is the value of the input array operand
, with a slice update
overwritten at start_indices
. The shape of update
determines the shape of the sub-array of the result which is updated. The shape of start_indices
must be rank == 1, with dimension size equal to the rank of operand
.
DynamicUpdateSlice(operand, update, start_indices)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | N dimensional array of type T |
update | XlaOp | N dimensional array of type T containing the slice update. Each dimension of update shape must be strictly greater than zero, and start + update must be less than or equal to the operand size for each dimension to avoid generating out-of-bounds update indices. |
start_indices | sequence of N XlaOp | List of N scalar integers containing the starting indices of the slice for each dimension. Value must be greater than or equal to zero. |
The effective slice indices are computed by applying the following transformation for each index i
in [1, N)
before performing the slice:
start_indices[i] = clamp(start_indices[i], 0, operand.dimension_size[i] - update.dimension_size[i])
This ensures that the updated slice is always in-bounds with respect to the operand array. If the slice is in-bounds before the transformation is applied, the transformation has no effect.
1-dimensional example:
let a = {0.0, 1.0, 2.0, 3.0, 4.0}
let u = {5.0, 6.0}
let s = {2}
DynamicUpdateSlice(a, u, s) produces:
{0.0, 1.0, 5.0, 6.0, 4.0}
2-dimensional example:
let b =
{ {0.0, 1.0, 2.0},
{3.0, 4.0, 5.0},
{6.0, 7.0, 8.0},
{9.0, 10.0, 11.0} }
let u =
{ {12.0, 13.0},
{14.0, 15.0},
{16.0, 17.0} }
let s = {1, 1}
DynamicUpdateSlice(b, u, s) produces:
{ {0.0, 1.0, 2.0},
{3.0, 12.0, 13.0},
{6.0, 14.0, 15.0},
{9.0, 16.0, 17.0} }
Element-wise binary arithmetic operations
See also XlaBuilder::Add
.
A set of element-wise binary arithmetic operations is supported.
Op(lhs, rhs)
Where Op
is one of Add
(addition), Sub
(subtraction), Mul
(multiplication), Div
(division), Rem
(remainder), Max
(maximum), Min
(minimum), Atan2
(arctangent of y/x), LogicalAnd
(logical AND), LogicalOr
(logical OR), or LogicalXor
(logical XOR).
Arguments | Type | Semantics |
---|---|---|
lhs | XlaOp | left-hand-side operand: array of type T |
rhs | XlaOp | right-hand-side operand: array of type T |
The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.
When Op
is Rem
, the sign of the result is taken from the dividend, and the absolute value of the result is always less than the divisor's absolute value.
Integer division overflow (signed/unsigned division/remainder by zero or signed division/remainder of INT_SMIN
with -1
) produces an implementation defined value.
An alternative variant with different-rank broadcasting support exists for these operations:
Op(lhs, rhs, broadcast_dimensions)
Where Op
is the same as above. This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).
The additional broadcast_dimensions
operand is a slice of integers used to expand the rank of the lower-rank operand up to the rank of the higher-rank operand. broadcast_dimensions
maps the dimensions of the lower-rank shape to the dimensions of the higher-rank shape. The unmapped dimensions of the expanded shape are filled with dimensions of size one. Degenerate-dimension broadcasting then broadcasts the shapes along these degenerate dimensions to equalize the shapes of both operands. The semantics are described in detail on the broadcasting page .
Element-wise comparison operations
See also XlaBuilder::Eq
.
A set of standard element-wise binary comparison operations is supported. Note that standard IEEE 754 floating-point comparison semantics apply when comparing floating-point types.
Op(lhs, rhs)
Where Op
is one of Eq
(equal-to), Ne
(not equal-to), Ge
(greater-or-equal-than), Gt
(greater-than), Le
(less-or-equal-than), Lt
(less-than). Another set of operators, EqTotalOrder, NeTotalOrder, GeTotalOrder, GtTotalOrder, LeTotalOrder, and LtTotalOrder, provide the same functionalities, except that they additionally support a total order over the floating point numbers, by enforcing -NaN < -Inf < -Finite < -0 < +0 < +Finite < +Inf < +NaN.
Arguments | Type | Semantics |
---|---|---|
lhs | XlaOp | left-hand-side operand: array of type T |
rhs | XlaOp | right-hand-side operand: array of type T |
The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays with the element type PRED
. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.
An alternative variant with different-rank broadcasting support exists for these operations:
Op(lhs, rhs, broadcast_dimensions)
Where Op
is the same as above. This variant of the operation should be used for comparison operations between arrays of different ranks (such as adding a matrix to a vector).
The additional broadcast_dimensions
operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .
Element-wise unary functions
XlaBuilder supports these element-wise unary functions:
Abs(operand)
Element-wise abs x -> |x|
.
Ceil(operand)
Element-wise ceil x -> ⌈x⌉
.
Clz(operand)
Element-wise counting of the number of leading zeros x -> clz(x)
.
Cos(operand)
Element-wise cosine x -> cos(x)
.
Exp(operand)
Element-wise natural exponential x -> e^x
.
Floor(operand)
Element-wise floor x -> ⌊x⌋
.
Imag(operand)
Element-wise imaginary part of a complex (or real) shape. x -> imag(x)
. If the operand is a floating point type, returns 0.
IsFinite(operand)
Tests whether each element of operand
is finite, ie, is not positive or negative infinity, and is not NaN
. Returns an array of PRED
values with the same shape as the input, where each element is true
if and only if the corresponding input element is finite.
Log(operand)
Element-wise natural logarithm x -> ln(x)
.
Log1p(operand)
Element-wise natural logarithm of a number plus one x -> ln(x + 1)
LogicalNot(operand)
Element-wise logical not x -> !(x)
.
Logistic(operand)
Element-wise logistic function computation x -> logistic(x)
.
PopulationCount(operand)
Computes the number of bits set in each element of operand
.
Neg(operand)
Element-wise negation x -> -x
.
Real(operand)
Element-wise real part of a complex (or real) shape. x -> real(x)
. If the operand is a floating point type, returns the same value.
Rsqrt(operand)
Element-wise reciprocal of square root operation x -> 1.0 / sqrt(x)
.
Sign(operand)
Element-wise sign operation x -> sgn(x)
where
\[\text{sgn}(x) = \begin{cases} -1 & x < 0\\ -0 & x = -0\\ NaN & x = NaN\\ +0 & x = +0\\ 1 & x > 0 \end{cases}\]
using the comparison operator of the element type of operand
.
Sqrt(operand)
Element-wise square root operation x -> sqrt(x)
.
Cbrt(operand)
Element-wise cubic root operation x -> cbrt(x)
.
Tan(operand)
Element-wise tangent x -> tan(x)
.
Tanh(operand)
Element-wise hyperbolic tangent x -> tanh(x)
.
Round(operand)
Element-wise rounding, ties away from zero.
RoundNearestEven(operand)
Element-wise rounding, ties to nearest even.
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | The operand to the function |
The function is applied to each element in the operand
array, resulting in an array with the same shape. It is allowed for operand
to be a scalar (rank 0).
Fft
The XLA FFT operation implements the forward and inverse Fourier Transforms for real and complex inputs/outputs. Multidimensional FFTs on up to 3 axes are supported.
See also XlaBuilder::Fft
.
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | The array we are Fourier transforming. |
fft_type | FftType | See the table below. |
fft_length | ArraySlice<int64> | The time-domain lengths of the axes being transformed. This is needed in particular for IRFFT to right-size the innermost axis, since RFFT(fft_length=[16]) has the same output shape as RFFT(fft_length=[17]) . |
FftType | Semantics |
---|---|
FFT | Forward complex-to-complex FFT. Shape is unchanged. |
IFFT | Inverse complex-to-complex FFT. Shape is unchanged. |
RFFT | Forward real-to-complex FFT. Shape of the innermost axis is reduced to fft_length[-1] // 2 + 1 if fft_length[-1] is a non-zero value, omitting the reversed conjugate part of the transformed signal beyond the Nyquist frequency. |
IRFFT | Inverse real-to-complex FFT (ie takes complex, returns real). Shape of the innermost axis is expanded to fft_length[-1] if fft_length[-1] is a non-zero value, inferring the part of the transformed signal beyond the Nyquist frequency from the reverse conjugate of the 1 to fft_length[-1] // 2 + 1 entries. |
Multidimensional FFT
When more than 1 fft_length
is provided, this is equivalent to applying a cascade of FFT operations to each of the innermost axes. Note that for the real->complex and complex->real cases, the innermost axis transform is (effectively) performed first (RFFT; last for IRFFT), which is why the innermost axis is the one which changes size. Other axis transforms will then be complex->complex.
Implementation details
CPU FFT is backed by Eigen's TensorFFT. GPU FFT uses cuFFT.
Gather
The XLA gather operation stitches together several slices (each slice at a potentially different runtime offset) of an input array.
General Semantics
See also XlaBuilder::Gather
. For a more intuitive description, see the "Informal Description" section below.
gather(operand, start_indices, offset_dims, collapsed_slice_dims, slice_sizes, start_index_map)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | The array we're gathering from. |
start_indices | XlaOp | Array containing the starting indices of the slices we gather. |
index_vector_dim | int64 | The dimension in start_indices that "contains" the starting indices. See below for a detailed description. |
offset_dims | ArraySlice<int64> | The set of dimensions in the output shape that offset into an array sliced from operand. |
slice_sizes | ArraySlice<int64> | slice_sizes[i] is the bounds for the slice on dimension i . |
collapsed_slice_dims | ArraySlice<int64> | The set of dimensions in each slice that are collapsed away. These dimensions must have size 1. |
start_index_map | ArraySlice<int64> | A map that describes how to map indices in start_indices to legal indices into operand. |
indices_are_sorted | bool | Whether the indices are guaranteed to be sorted by the caller. |
unique_indices | bool | Whether the indices are guaranteed to be unique by the caller. |
For convenience, we label dimensions in the output array not in offset_dims
as batch_dims
.
The output is an array of rank batch_dims.size
+ offset_dims.size
.
The operand.rank
must equal the sum of offset_dims.size
and collapsed_slice_dims.size
. Also, slice_sizes.size
has to be equal to operand.rank
.
If index_vector_dim
is equal to start_indices.rank
we implicitly consider start_indices
to have a trailing 1
dimension (ie if start_indices
was of shape [6,7]
and index_vector_dim
is 2
then we implicitly consider the shape of start_indices
to be [6,7,1]
).
The bounds for the output array along dimension i
is computed as follows:
If
i
is present inbatch_dims
(ie is equal tobatch_dims[k]
for somek
) then we pick the corresponding dimension bounds out ofstart_indices.shape
, skippingindex_vector_dim
(ie pickstart_indices.shape.dims
[k
] ifk
<index_vector_dim
andstart_indices.shape.dims
[k
+1
] otherwise).If
i
is present inoffset_dims
(ie equal tooffset_dims
[k
] for somek
) then we pick the corresponding bound out ofslice_sizes
after accounting forcollapsed_slice_dims
(ie we pickadjusted_slice_sizes
[k
] whereadjusted_slice_sizes
isslice_sizes
with the bounds at indicescollapsed_slice_dims
removed).
Formally, the operand index In
corresponding to a given output index Out
is calculated as follows:
Let
G
= {Out
[k
] fork
inbatch_dims
}. UseG
to slice out a vectorS
such thatS
[i
] =start_indices
[Combine(G
,i
)] where Combine(A, b) inserts b at positionindex_vector_dim
into A. Note that this is well defined even ifG
is empty -- ifG
is empty thenS
=start_indices
.Create a starting index,
S
in
, intooperand
usingS
by scatteringS
usingstart_index_map
. More precisely:S
in
[start_index_map
[k
]] =S
[k
] ifk
<start_index_map.size
.S
in
[_
] =0
otherwise.
Create an index
O
in
intooperand
by scattering the indices at the offset dimensions inOut
according to thecollapsed_slice_dims
set. More precisely:O
in
[remapped_offset_dims
(k
)] =Out
[offset_dims
[k
]] ifk
<offset_dims.size
(remapped_offset_dims
is defined below).O
in
[_
] =0
otherwise.
In
isO
in
+S
in
where + is element-wise addition.
remapped_offset_dims
is a monotonic function with domain [ 0
, offset_dims.size
) and range [ 0
, operand.rank
) \ collapsed_slice_dims
. So if, eg, offset_dims.size
is 4
, operand.rank
is 6
and collapsed_slice_dims
is { 0
, 2
} then remapped_offset_dims
is { 0
→ 1
, 1
→ 3
, 2
→ 4
, 3
→ 5
}.
If indices_are_sorted
is set to true then XLA can assume that start_indices
are sorted (in ascending start_index_map
order) by the user. If they are not then the semantics is implementation defined.
If unique_indices
is set to true then XLA can assume that all element scattered to are unique. So XLA could use non-atomic operations. If unique_indices
is set to true and the indices being scattered to are not unique then the semantics is implementation defined.
Informal Description and Examples
Informally, every index Out
in the output array corresponds to an element E
in the operand array, computed as follows:
We use the batch dimensions in
Out
to look up a starting index fromstart_indices
.We use
start_index_map
to map the starting index (whose size may be less than operand.rank) to a "full" starting index into theoperand
.We dynamic-slice out a slice with size
slice_sizes
using the full starting index.We reshape the slice by collapsing the
collapsed_slice_dims
dimensions. Since all collapsed slice dimensions must have a bound of 1, this reshape is always legal.We use the offset dimensions in
Out
to index into this slice to get the input element,E
, corresponding to output indexOut
.
index_vector_dim
is set to start_indices.rank
- 1
in all of the examples that follow. More interesting values for index_vector_dim
do not change the operation fundamentally, but make the visual representation more cumbersome.
To get an intuition on how all of the above fits together, let's look at an example that gathers 5 slices of shape [8,6]
from a [16,11]
array. The position of a slice into the [16,11]
array can be represented as an index vector of shape S64[2]
, so the set of 5 positions can be represented as a S64[5,2]
array.
The behavior of the gather operation can then be depicted as an index transformation that takes [ G
, O
0
, O
1
], an index in the output shape, and maps it to an element in the input array in the following way:
We first select an ( X
, Y
) vector from the gather indices array using G
. The element in the output array at index [ G
, O
0
, O
1
] is then the element in the input array at index [ X
+ O
0
, Y
+ O
1
].
slice_sizes
is [8,6]
, which decides the range of O 0
and O 1
, and this in turn decides the bounds of the slice.
This gather operation acts as a batch dynamic slice with G
as the batch dimension.
The gather indices may be multidimensional. For instance, a more general version of the example above using a "gather indices" array of shape [4,5,2]
would translate indices like this:
Again, this acts as a batch dynamic slice G
0
and G
1
as the batch dimensions. The slice size is still [8,6]
.
The gather operation in XLA generalizes the informal semantics outlined above in the following ways:
We can configure which dimensions in the output shape are the offset dimensions (dimensions containing
O
0
,O
1
in the last example). The output batch dimensions (dimensions containingG
0
,G
1
in the last example) are defined to be the output dimensions that are not offset dimensions.The number of output offset dimensions explicitly present in the output shape may be smaller than the input rank. These "missing" dimensions, which are listed explicitly as
collapsed_slice_dims
, must have a slice size of1
. Since they have a slice size of1
the only valid index for them is0
and eliding them does not introduce ambiguity.The slice extracted from the "Gather Indices" array ((
X
,Y
) in the last example) may have fewer elements than the input array rank, and an explicit mapping dictates how the index should be expanded to have the same rank as the input.
As a final example, we use (2) and (3) to implement tf.gather_nd
:
G
0
and G
1
are used to slice out a starting index from the gather indices array as usual, except the starting index has only one element, X
. Similarly, there is only one output offset index with the value O
0
. However, before being used as indices into the input array, these are expanded in accordance to "Gather Index Mapping" ( start_index_map
in the formal description) and "Offset Mapping" ( remapped_offset_dims
in the formal description) into [ X
, 0
] and [ 0
, O
0
] respectively, adding up to [ X
, O
0
]. In other words, the output index [ G
0
, G
1
, O
0
] maps to the input index [ GatherIndices
[ G
0
, G
1
, 0
], O
0
] which gives us the semantics for tf.gather_nd
.
slice_sizes
for this case is [1,11]
. Intuitively this means that every index X
in the gather indices array picks an entire row and the result is the concatenation of all these rows.
GetDimensionSize
See also XlaBuilder::GetDimensionSize
.
Returns the size of the given dimension of the operand. The operand must be array shaped.
GetDimensionSize(operand, dimension)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | n dimensional input array |
dimension | int64 | A value in the interval [0, n) that specifies the dimension |
SetDimensionSize
See also XlaBuilder::SetDimensionSize
.
Sets the dynamic size of XlaOp's given dimension. The operand must be array shaped.
SetDimensionSize(operand, size, dimension)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | n dimensional input array. |
size | XlaOp | int32 representing the runtime dynamic size. |
dimension | int64 | A value in the interval [0, n) that specifies the dimension. |
Pass through the operand as result, with dynamic dimension tracked by the compiler.
Padded values will be ignored by downstream reduction ops.
let v: f32[10] = f32[10]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
let five: s32 = 5;
let six: s32 = 6;
// Setting dynamic dimension size doesn't change the upper bound of the static
// shape.
let padded_v_five: f32[10] = set_dimension_size(v, five, /*dimension=*/0);
let padded_v_six: f32[10] = set_dimension_size(v, six, /*dimension=*/0);
// sum == 1 + 2 + 3 + 4 + 5
let sum:f32[] = reduce_sum(padded_v_five);
// product == 1 * 2 * 3 * 4 * 5
let product:f32[] = reduce_product(padded_v_five);
// Changing padding size will yield different result.
// sum == 1 + 2 + 3 + 4 + 5 + 6
let sum:f32[] = reduce_sum(padded_v_six);
GetTupleElement
See also XlaBuilder::GetTupleElement
.
Indexes into a tuple with a compile-time-constant value.
The value must be a compile-time-constant so that shape inference can determine the type of the resulting value.
This is analogous to std::get<int N>(t)
in C++. Conceptually:
let v: f32[10] = f32[10]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
let s: s32 = 5;
let t: (f32[10], s32) = tuple(v, s);
let element_1: s32 = gettupleelement(t, 1); // Inferred shape matches s32.
See also tf.tuple
.
Infeed
See also XlaBuilder::Infeed
.
Infeed(shape)
Argument | Type | Semantics |
---|---|---|
shape | Shape | Shape of the data read from the Infeed interface. The layout field of the shape must be set to match the layout of the data sent to the device; otherwise its behavior is undefined. |
Reads a single data item from the implicit Infeed streaming interface of the device, interpreting the data as the given shape and its layout, and returns a XlaOp
of the data. Multiple Infeed operations are allowed in a computation, but there must be a total order among the Infeed operations. For example, two Infeeds in the code below have a total order since there is a dependency between the while loops.
result1 = while (condition, init = init_value) {
Infeed(shape)
}
result2 = while (condition, init = result1) {
Infeed(shape)
}
Nested tuple shapes are not supported. For an empty tuple shape, the Infeed operation is effectively a no-op and proceeds without reading any data from the Infeed of the device.
Iota
See also XlaBuilder::Iota
.
Iota(shape, iota_dimension)
Builds a constant literal on device rather than a potentially large host transfer. Creates an array that has specified shape and holds values starting at zero and incrementing by one along the specified dimension. For floating-point types, the produced array is equivalent to ConvertElementType(Iota(...))
where the Iota
is of integral type and the conversion is to the floating-point type.
Arguments | Type | Semantics |
---|---|---|
shape | Shape | Shape of the array created by Iota() |
iota_dimension | int64 | The dimension to increment along. |
For example, Iota(s32[4, 8], 0)
returns
[[0, 0, 0, 0, 0, 0, 0, 0 ],
[1, 1, 1, 1, 1, 1, 1, 1 ],
[2, 2, 2, 2, 2, 2, 2, 2 ],
[3, 3, 3, 3, 3, 3, 3, 3 ]]
Iota(s32[4, 8], 1)
returns
[[0, 1, 2, 3, 4, 5, 6, 7 ],
[0, 1, 2, 3, 4, 5, 6, 7 ],
[0, 1, 2, 3, 4, 5, 6, 7 ],
[0, 1, 2, 3, 4, 5, 6, 7 ]]
Map
See also XlaBuilder::Map
.
Map(operands..., computation)
Arguments | Type | Semantics |
---|---|---|
operands | sequence of N XlaOp s | N arrays of types T 0..T {N-1} |
computation | XlaComputation | computation of type T_0, T_1, ..., T_{N + M -1} -> S with N parameters of type T and M of arbitrary type |
dimensions | int64 array | array of map dimensions |
Applies a scalar function over the given operands
arrays, producing an array of the same dimensions where each element is the result of the mapped function applied to the corresponding elements in the input arrays.
The mapped function is an arbitrary computation with the restriction that it has N inputs of scalar type T
and a single output with type S
. The output has the same dimensions as the operands except that the element type T is replaced with S.
For example: Map(op1, op2, op3, computation, par1)
maps elem_out <- computation(elem1, elem2, elem3, par1)
at each (multi-dimensional) index in the input arrays to produce the output array.
OptimizationBarrier
Blocks any optimization pass from moving computations across the barrier.
Ensures that all inputs are evaluated before any operators that depend on the barrier's outputs.
Pad
See also XlaBuilder::Pad
.
Pad(operand, padding_value, padding_config)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | array of type T |
padding_value | XlaOp | scalar of type T to fill in the added padding |
padding_config | PaddingConfig | padding amount on both edges (low, high) and between the elements of each dimension |
Expands the given operand
array by padding around the array as well as between the elements of the array with the given padding_value
. padding_config
specifies the amount of edge padding and the interior padding for each dimension.
PaddingConfig
is a repeated field of PaddingConfigDimension
, which contains three fields for each dimension: edge_padding_low
, edge_padding_high
, and interior_padding
.
edge_padding_low
and edge_padding_high
specify the amount of padding added at the low-end (next to index 0) and the high-end (next to the highest index) of each dimension respectively. The amount of edge padding can be negative -- the absolute value of negative padding indicates the number of elements to remove from the specified dimension.
interior_padding
specifies the amount of padding added between any two elements in each dimension; it may not be negative. Interior padding occurs logically before edge padding, so in the case of negative edge padding, elements are removed from the interior-padded operand.
This operation is a no-op if the edge padding pairs are all (0, 0) and the interior padding values are all 0. The figure below shows examples of different edge_padding
and interior_padding
values for a two-dimensional array.

Recv
See also XlaBuilder::Recv
.
Recv(shape, channel_handle)
Arguments | Type | Semantics |
---|---|---|
shape | Shape | shape of the data to receive |
channel_handle | ChannelHandle | unique identifier for each send/recv pair |
Receives data of the given shape from a Send
instruction in another computation that shares the same channel handle. Returns a XlaOp for the received data.
The client API of Recv
operation represents synchronous communication. However, the instruction is internally decomposed into 2 HLO instructions ( Recv
and RecvDone
) to enable asynchronous data transfers. See also HloInstruction::CreateRecv
and HloInstruction::CreateRecvDone
.
Recv(const Shape& shape, int64 channel_id)
Allocates resources required to receive data from a Send
instruction with the same channel_id. Returns a context for the allocated resources, which is used by a following RecvDone
instruction to wait for the completion of the data transfer. The context is a tuple of {receive buffer (shape), request identifier (U32)} and it can only be used by a RecvDone
instruction.
RecvDone(HloInstruction context)
Given a context created by a Recv
instruction, waits for the data transfer to complete and returns the received data.
Reduce
See also XlaBuilder::Reduce
.
Applies a reduction function to one or more arrays in parallel.
Reduce(operands..., init_values..., computation, dimensions)
Arguments | Type | Semantics |
---|---|---|
operands | Sequence of N XlaOp | N arrays of types T_0, ..., T_{N-1} . |
init_values | Sequence of N XlaOp | N scalars of types T_0, ..., T_{N-1} . |
computation | XlaComputation | computation of type T_0, ..., T_{N-1}, T_0, ..., T_{N-1} -> Collate(T_0, ..., T_{N-1}) . |
dimensions | int64 array | unordered array of dimensions to reduce. |
Where:
- N is required to be greater or equal to 1.
- The computation has to be "roughly" associative (see below).
- All input arrays must have the same dimensions.
- All initial values have to form an identity under
computation
. - If
N = 1
,Collate(T)
isT
. - If
N > 1
,Collate(T_0, ..., T_{N-1})
is a tuple ofN
elements of typeT
.
This operation reduces one or more dimensions of each input array into scalars. The rank of each returned array is rank(operand) - len(dimensions)
. The output of the op is Collate(Q_0, ..., Q_N)
where Q_i
is an array of type T_i
, the dimensions of which are described below.
Different backends are allowed to reassociate the reduction computation. This can lead to numerical differences, as some reduction functions like addition are not associative for floats. However, if the range of the data is limited, floating-point addition is close enough to being associative for most practical uses.
Examples
When reducing across one dimension in a single 1D array with values [10, 11, 12, 13]
, with reduction function f
(this is computation
) then that could be computed as
f(10, f(11, f(12, f(init_value, 13)))
but there are also many other possibilities, eg
f(init_value, f(f(10, f(init_value, 11)), f(f(init_value, 12), f(init_value, 13))))
The following is a rough pseudo-code example of how reduction could be implemented, using summation as the reduction computation with an initial value of 0.
result_shape <- remove all dims in dimensions from operand_shape
# Iterate over all elements in result_shape. The number of r's here is equal
# to the rank of the result
for r0 in range(result_shape[0]), r1 in range(result_shape[1]), ...:
# Initialize this result element
result[r0, r1...] <- 0
# Iterate over all the reduction dimensions
for d0 in range(dimensions[0]), d1 in range(dimensions[1]), ...:
# Increment the result element with the value of the operand's element.
# The index of the operand's element is constructed from all ri's and di's
# in the right order (by construction ri's and di's together index over the
# whole operand shape).
result[r0, r1...] += operand[ri... di]
Here's an example of reducing a 2D array (matrix). The shape has rank 2, dimension 0 of size 2 and dimension 1 of size 3:

Results of reducing dimensions 0 or 1 with an "add" function:

Note that both reduction results are 1D arrays. The diagram shows one as column and another as row just for visual convenience.
For a more complex example, here is a 3D array. Its rank is 3, dimension 0 of size 4, dimension 1 of size 2 and dimension 2 of size 3. For simplicity, the values 1 to 6 are replicated across dimension 0.

Similarly to the 2D example, we can reduce just one dimension. If we reduce dimension 0, for example, we get a rank-2 array where all values across dimension 0 were folded into a scalar:
| 4 8 12 |
| 16 20 24 |
If we reduce dimension 2, we also get a rank-2 array where all values across dimension 2 were folded into a scalar:
| 6 15 |
| 6 15 |
| 6 15 |
| 6 15 |
Note that the relative order between the remaining dimensions in the input is preserved in the output, but some dimensions may get assigned new numbers (since the rank changes).
We can also reduce multiple dimensions. Add-reducing dimensions 0 and 1 produces the 1D array [20, 28, 36]
.
Reducing the 3D array over all its dimensions produces the scalar 84
.
Variadic Reduce
When N > 1
, reduce function application is slightly more complex, as it is applied simultaneously to all inputs. The operands are supplied to the computation in the following order:
- Running reduced value for the first operand
- ...
- Running reduced value for the N'th operand
- Input value for the first operand
- ...
- Input value for the N'th operand
For example, consider the following reduction function, which can be used to compute the max and the argmax of a 1-D array in parallel:
f: (Float, Int, Float, Int) -> Float, Int
f(max, argmax, value, index):
if value >= max:
return (value, index)
else:
return (max, argmax)
For 1-D Input arrays V = Float[N], K = Int[N]
, and init values I_V = Float, I_K = Int
, the result f_(N-1)
of reducing across the only input dimension is equivalent to the following recursive application:
f_0 = f(I_V, I_K, V_0, K_0)
f_1 = f(f_0.first, f_0.second, V_1, K_1)
...
f_(N-1) = f(f_(N-2).first, f_(N-2).second, V_(N-1), K_(N-1))
Applying this reduction to an array of values, and an array of sequential indices (ie iota), will co-iterate over the arrays, and return a tuple containing the maximal value and the matching index.
ReducePrecision
See also XlaBuilder::ReducePrecision
.
Models the effect of converting floating-point values to a lower-precision format (such as IEEE-FP16) and back to the original format. The number of exponent and mantissa bits in the lower-precision format can be specified arbitrarily, although all bit sizes may not be supported on all hardware implementations.
ReducePrecision(operand, mantissa_bits, exponent_bits)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | array of floating-point type T . |
exponent_bits | int32 | number of exponent bits in lower-precision format |
mantissa_bits | int32 | number of mantissa bits in lower-precision format |
The result is an array of type T
. The input values are rounded to the nearest value representable with the given number of mantissa bits (using "ties to even" semantics), and any values that exceed the range specified by the number of exponent bits are clamped to positive or negative infinity. NaN
values are retained, although they may be converted to canonical NaN
values.
The lower-precision format must have at least one exponent bit (in order to distinguish a zero value from an infinity, since both have a zero mantissa), and must have a non-negative number of mantissa bits. The number of exponent or mantissa bits may exceed the corresponding value for type T
; the corresponding portion of the conversion is then simply a no-op.
ReduceScatter
See also XlaBuilder::ReduceScatter
.
ReduceScatter is a collective operation that effectively does an AllReduce and then scatters the result by splitting it into shard_count
blocks along the scatter_dimension
and replica i
in the replica group receives the ith
shard.
ReduceScatter(operand, computation, scatter_dim, shard_count, replica_group_ids, channel_id)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | Array or a non-empty tuple of arrays to reduce across replicas. |
computation | XlaComputation | Reduction computation |
scatter_dimension | int64 | Dimension to scatter. |
shard_count | int64 | Number of blocks to split scatter_dimension |
replica_groups | vector of vectors of int64 | Groups between which the reductions are performed |
channel_id | optional int64 | Optional channel ID for cross-module communication |
- When
operand
is a tuple of arrays, the reduce-scatter is performed on each element of the tuple. -
replica_groups
is a list of replica groups between which the reduction is performed (replica id for the current replica can be retrieved usingReplicaId
). The order of replicas in each group determines the order in which the all-reduce result will be scattered.replica_groups
must either be empty (in which case all replicas belong to a single group), or contain the same number of elements as the number of replicas. When there are more than one replica groups, they all must be of the same size. For example,replica_groups = {0, 2}, {1, 3}
performs reduction between the replicas0
and2
, and1
and3
and then scatters the result. -
shard_count
is the size of each replica group. We need this in cases wherereplica_groups
are empty. Ifreplica_groups
is not empty,shard_count
must be equal to the size of each replica group. -
channel_id
is used for cross-module communication: onlyreduce-scatter
operations with the samechannel_id
can communicate with each other.
The output shape is the input shape with the scatter_dimension
made shard_count
times smaller. For example, if there are two replicas and the operand has the value [1.0, 2.25]
and [3.0, 5.25]
respectively on the two replicas, then the output value from this op where scatter_dim
is 0
will be [4.0]
for the first replica and [7.5]
for the second replica.
ReduceWindow
See also XlaBuilder::ReduceWindow
.
Applies a reduction function to all elements in each window of a sequence of N multi-dimensional arrays, producing a single or a tuple of N multi-dimensional arrays as output. Each output array has the same number of elements as the number of valid positions of the window. A pooling layer can be expressed as a ReduceWindow
. Similar to Reduce
, the applied computation
is always passed the init_values
on the left-hand side.
ReduceWindow(operands..., init_values..., computation, window_dimensions, window_strides, padding)
Arguments | Type | Semantics |
---|---|---|
operands | N XlaOps | A sequence of N multi-dimensional arrays of types T_0,..., T_{N-1} , each representing the base area on which the window is placed. |
init_values | N XlaOps | The N starting values for the reduction, one for each of the N operands. See Reduce for details. |
computation | XlaComputation | Reduction function of type T_0, ..., T_{N-1}, T_0, ..., T_{N-1} -> Collate(T_0, ..., T_{N-1}) , to apply to elements in each window of all the input operands. |
window_dimensions | ArraySlice<int64> | array of integers for window dimension values |
window_strides | ArraySlice<int64> | array of integers for window stride values |
base_dilations | ArraySlice<int64> | array of integers for base dilation values |
window_dilations | ArraySlice<int64> | array of integers for window dilation values |
padding | Padding | padding type for window (Padding::kSame, which pads so as to have the same output shape as input if the stride is 1, or Padding::kValid, which uses no padding and "stops" the window once it no longer fits) |
Where:
- N is required to be greater or equal to 1.
- All input arrays must have the same dimensions.
- If
N = 1
,Collate(T)
isT
. - If
N > 1
,Collate(T_0, ..., T_{N-1})
is a tuple ofN
elements of type(T0,...T{N-1})
.
Below code and figure shows an example of using ReduceWindow
. Input is a matrix of size [4x6] and both window_dimensions and window_stride_dimensions are [2x3].
// Create a computation for the reduction (maximum).
XlaComputation max;
{
XlaBuilder builder(client_, "max");
auto y = builder.Parameter(0, ShapeUtil::MakeShape(F32, {}), "y");
auto x = builder.Parameter(1, ShapeUtil::MakeShape(F32, {}), "x");
builder.Max(y, x);
max = builder.Build().value();
}
// Create a ReduceWindow computation with the max reduction computation.
XlaBuilder builder(client_, "reduce_window_2x3");
auto shape = ShapeUtil::MakeShape(F32, {4, 6});
auto input = builder.Parameter(0, shape, "input");
builder.ReduceWindow(
input,
/*init_val=*/builder.ConstantLiteral(LiteralUtil::MinValue(F32)),
*max,
/*window_dimensions=*/{2, 3},
/*window_stride_dimensions=*/{2, 3},
Padding::kValid);

Stride of 1 in a dimension specifies that the position of a window in the dimension is 1 element away from its adjacent window. In order to specify that no windows overlap with each other, window_stride_dimensions should be equal to window_dimensions. The figure below illustrates the use of two different stride values. Padding is applied to each dimension of the input and the calculations are the same as though the input came in with the dimensions it has after padding.

For a non-trivial padding example, consider computing reduce-window minimum (initial value is MAX_FLOAT
) with dimension 3
and stride 2
over the input array [10000, 1000, 100, 10, 1]
. Padding kValid
computes minimums over two valid windows: [10000, 1000, 100]
and [100, 10, 1]
, resulting in the output [100, 1]
. Padding kSame
first pads the array so that the shape after the reduce-window would be the same as input for stride one by adding initial elements on both sides, getting [MAX_VALUE, 10000, 1000, 100, 10, 1, MAX_VALUE]
. Running reduce-window over the padded array operates on three windows [MAX_VALUE, 10000, 1000]
, [1000, 100, 10]
, [10, 1, MAX_VALUE]
, and yields [1000, 10, 1]
.
The evaluation order of the reduction function is arbitrary and may be non-deterministic. Therefore, the reduction function should not be overly sensitive to reassociation. See the discussion about associativity in the context of Reduce
for more details.
ReplicaId
See also XlaBuilder::ReplicaId
.
Returns the unique ID (U32 scalar) of the replica.
ReplicaId()
The unique ID of each replica is an unsigned integer in the interval [0, N)
, where N
is the number of replicas. Since all the replicas are running the same program, a ReplicaId()
call in the program will return a different value on each replica.
Reshape
See also XlaBuilder::Reshape
and the Collapse
operation.
Reshapes the dimensions of an array into a new configuration.
Reshape(operand, new_sizes)
Reshape(operand, dimensions, new_sizes)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | array of type T |
dimensions | int64 vector | order in which dimensions are collapsed |
new_sizes | int64 vector | vector of sizes of new dimensions |
Conceptually, reshape first flattens an array into a one-dimensional vector of data values, and then refines this vector into a new shape. The input arguments are an arbitrary array of type T, a compile-time-constant vector of dimension indices, and a compile-time-constant vector of dimension sizes for the result. The values in the dimension
vector, if given, must be a permutation of all of T's dimensions; the default if not given is {0, ..., rank - 1}
. The order of the dimensions in dimensions
is from slowest-varying dimension (most major) to fastest-varying dimension (most minor) in the loop nest which collapses the input array into a single dimension. The new_sizes
vector determines the size of the output array. The value at index 0 in new_sizes
is the size of dimension 0, the value at index 1 is the size of dimension 1, and so on. The product of the new_size
dimensions must equal the product of the operand's dimension sizes. When refining the collapsed array into the multidimensional array defined by new_sizes
, the dimensions in new_sizes
are ordered from slowest varying (most major) and to fastest varying (most minor).
For example, let v be an array of 24 elements:
let v = f32[4x2x3] { { {10, 11, 12}, {15, 16, 17} },
{ {20, 21, 22}, {25, 26, 27} },
{ {30, 31, 32}, {35, 36, 37} },
{ {40, 41, 42}, {45, 46, 47} } };
In-order collapse:
let v012_24 = Reshape(v, {0,1,2}, {24});
then v012_24 == f32[24] {10, 11, 12, 15, 16, 17, 20, 21, 22, 25, 26, 27,
30, 31, 32, 35, 36, 37, 40, 41, 42, 45, 46, 47};
let v012_83 = Reshape(v, {0,1,2}, {8,3});
then v012_83 == f32[8x3] { {10, 11, 12}, {15, 16, 17},
{20, 21, 22}, {25, 26, 27},
{30, 31, 32}, {35, 36, 37},
{40, 41, 42}, {45, 46, 47} };
Out-of-order collapse:
let v021_24 = Reshape(v, {1,2,0}, {24});
then v012_24 == f32[24] {10, 20, 30, 40, 11, 21, 31, 41, 12, 22, 32, 42,
15, 25, 35, 45, 16, 26, 36, 46, 17, 27, 37, 47};
let v021_83 = Reshape(v, {1,2,0}, {8,3});
then v021_83 == f32[8x3] { {10, 20, 30}, {40, 11, 21},
{31, 41, 12}, {22, 32, 42},
{15, 25, 35}, {45, 16, 26},
{36, 46, 17}, {27, 37, 47} };
let v021_262 = Reshape(v, {1,2,0}, {2,6,2});
then v021_262 == f32[2x6x2] { { {10, 20}, {30, 40},
{11, 21}, {31, 41},
{12, 22}, {32, 42} },
{ {15, 25}, {35, 45},
{16, 26}, {36, 46},
{17, 27}, {37, 47} } };
As a special case, reshape can transform a single-element array to a scalar and vice versa. For example,
Reshape(f32[1x1] { {5} }, {0,1}, {}) == 5;
Reshape(5, {}, {1,1}) == f32[1x1] { {5} };
Rev (reverse)
See also XlaBuilder::Rev
.
Rev(operand, dimensions)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | array of type T |
dimensions | ArraySlice<int64> | dimensions to reverse |
Reverses the order of elements in the operand
array along the specified dimensions
, generating an output array of the same shape. Each element of the operand array at a multidimensional index is stored into the output array at a transformed index. The multidimensional index is transformed by reversing the index in each dimension to be reversed (ie, if a dimension of size N is one of the reversing dimensions, its index i is transformed into N - 1 - i).
One use for the Rev
operation is to reverse the convolution weight array along the two window dimensions during the gradient computation in neural networks.
RngNormal
See also XlaBuilder::RngNormal
.
Constructs an output of a given shape with random numbers generated following the \(N(\mu, \sigma)\) normal distribution. The parameters \(\mu\) and\(\sigma\), and output shape have to have a floating point elemental type. The parameters furthermore have to be scalar valued.
RngNormal(mu, sigma, shape)
Arguments | Type | Semantics |
---|---|---|
mu | XlaOp | Scalar of type T specifying mean of generated numbers |
sigma | XlaOp | Scalar of type T specifying standard deviation of generated numbers |
shape | Shape | Output shape of type T |
RngUniform
See also XlaBuilder::RngUniform
.
Constructs an output of a given shape with random numbers generated following the uniform distribution over the interval \([a,b)\). The parameters and output element type have to be a boolean type, an integral type or a floating point types, and the types have to be consistent. The CPU and GPU backends currently only support F64, F32, F16, BF16, S64, U64, S32 and U32. Furthermore, the parameters need to be scalar valued. If \(b <= a\) the result is implementation-defined.
RngUniform(a, b, shape)
Arguments | Type | Semantics |
---|---|---|
a | XlaOp | Scalar of type T specifying lower limit of interval |
b | XlaOp | Scalar of type T specifying upper limit of interval |
shape | Shape | Output shape of type T |
RngBitGenerator
Generates an output with a given shape filled with uniform random bits using the specified algorithm (or backend default) and returns an updated state (with the same shape as initial state) and the generated random data.
Initial state is the initial state of the current random number generation. It and the required shape and valid values are dependent on the algorithm used.
The output is guaranteed to be a deterministic function of the initial state but it is not guaranteed to be deterministic between backends and different compiler versions.
RngBitGenerator(algorithm, key, shape)
Arguments | Type | Semantics |
---|---|---|
algorithm | RandomAlgorithm | PRNG algorithm to be used. |
initial_state | XlaOp | Initial state for the PRNG algorithm. |
shape | Shape | Output shape for generated data. |
Available values for algorithm
:
rng_default
: Backend specific algorithm with backend specific shape requirements.rng_three_fry
: ThreeFry counter-based PRNG algorithm. Theinitial_state
shape isu64[2]
with arbitrary values. Salmon et al. SC 2011. Parallel random numbers: as easy as 1, 2, 3.rng_philox
: Philox algorithm to generate random numbers in parallel. Theinitial_state
shape isu64[3]
with arbitrary values. Salmon et al. SC 2011. Parallel random numbers: as easy as 1, 2, 3.
Scatter
The XLA scatter operation generates a sequence of results which are the values of the input array operands
, with several slices (at indices specified by scatter_indices
) updated with the sequence of values in updates
using update_computation
.
See also XlaBuilder::Scatter
.
scatter(operands..., scatter_indices, updates..., update_computation, index_vector_dim, update_window_dims, inserted_window_dims, scatter_dims_to_operand_dims)
Arguments | Type | Semantics |
---|---|---|
operands | Sequence of N XlaOp | N arrays of types T_0, ..., T_N to be scattered into. |
scatter_indices | XlaOp | Array containing the starting indices of the slices that must be scattered to. |
updates | Sequence of N XlaOp | N arrays of types T_0, ..., T_N . updates[i] contains the values that must be used for scattering operands[i] . |
update_computation | XlaComputation | Computation to be used for combining the existing values in the input array and the updates during scatter. This computation should be of type T_0, ..., T_N, T_0, ..., T_N -> Collate(T_0, ..., T_N) . |
index_vector_dim | int64 | The dimension in scatter_indices that contains the starting indices. |
update_window_dims | ArraySlice<int64> | The set of dimensions in updates shape that are window dimensions . |
inserted_window_dims | ArraySlice<int64> | The set of window dimensions that must be inserted into updates shape. |
scatter_dims_to_operand_dims | ArraySlice<int64> | A dimensions map from the scatter indices to the operand index space. This array is interpreted as mapping i to scatter_dims_to_operand_dims[i] . It has to be one-to-one and total. |
indices_are_sorted | bool | Whether the indices are guaranteed to be sorted by the caller. |
Where:
- N is required to be greater or equal to 1.
-
operands
[0
], ...,operands
[N-1
] must all have the same dimensions. -
updates
[0
], ...,updates
[N-1
] must all have the same dimensions. - If
N = 1
,Collate(T)
isT
. - If
N > 1
,Collate(T_0, ..., T_N)
is a tuple ofN
elements of typeT
.
If index_vector_dim
is equal to scatter_indices.rank
we implicitly consider scatter_indices
to have a trailing 1
dimension.
We define update_scatter_dims
of type ArraySlice<int64>
as the set of dimensions in updates
shape that are not in update_window_dims
, in ascending order.
The arguments of scatter should follow these constraints:
Each
updates
array must be of rankupdate_window_dims.size + scatter_indices.rank - 1
.Bounds of dimension
i
in eachupdates
array must conform to the following:- If
i
is present inupdate_window_dims
(ie equal toupdate_window_dims
[k
] for somek
), then the bound of dimensioni
inupdates
must not exceed the corresponding bound ofoperand
after accounting for theinserted_window_dims
(ieadjusted_window_bounds
[k
], whereadjusted_window_bounds
contains the bounds ofoperand
with the bounds at indicesinserted_window_dims
removed). - If
i
is present inupdate_scatter_dims
(ie equal toupdate_scatter_dims
[k
] for somek
), then the bound of dimensioni
inupdates
must be equal to the corresponding bound ofscatter_indices
, skippingindex_vector_dim
(iescatter_indices.shape.dims
[k
], ifk
<index_vector_dim
andscatter_indices.shape.dims
[k+1
] otherwise).
- If
update_window_dims
must be in ascending order, not have any repeating dimension numbers, and be in the range[0, updates.rank)
.inserted_window_dims
must be in ascending order, not have any repeating dimension numbers, and be in the range[0, operand.rank)
.operand.rank
must equal the sum ofupdate_window_dims.size
andinserted_window_dims.size
.scatter_dims_to_operand_dims.size
must be equal toscatter_indices.shape.dims
[index_vector_dim
], and its values must be in the range[0, operand.rank)
.
For a given index U
in each updates
array, the corresponding index I
in the corresponding operands
array into which this update has to be applied is computed as follows:
- Let
G
= {U
[k
] fork
inupdate_scatter_dims
}. UseG
to look up an index vectorS
in thescatter_indices
array such thatS
[i
] =scatter_indices
[Combine(G
,i
)] where Combine(A, b) inserts b at positionsindex_vector_dim
into A. - Create an index
S
in
intooperand
usingS
by scatteringS
using thescatter_dims_to_operand_dims
map. More formally:-
S
in
[scatter_dims_to_operand_dims
[k
]] =S
[k
] ifk
<scatter_dims_to_operand_dims.size
. -
S
in
[_
] =0
otherwise.
-
- Create an index
W
in
into eachoperands
array by scattering the indices atupdate_window_dims
inU
according toinserted_window_dims
. More formally:-
W
in
[window_dims_to_operand_dims
(k
)] =U
[k
] ifk
is inupdate_window_dims
, wherewindow_dims_to_operand_dims
is the monotonic function with domain [0
,update_window_dims.size
) and range [0
,operand.rank
) \inserted_window_dims
. (For example, ifupdate_window_dims.size
is4
,operand.rank
is6
, andinserted_window_dims
is {0
,2
} thenwindow_dims_to_operand_dims
is {0
→1
,1
→3
,2
→4
,3
→5
}). -
W
in
[_
] =0
otherwise.
-
-
I
isW
in
+S
in
where + is element-wise addition.
In summary, the scatter operation can be defined as follows.
- Initialize
output
withoperands
, ie for all indicesJ
, for all indicesO
in theoperands
[J
] array:
output
[J
][O
] =operands
[J
][O
] - For every index
U
in theupdates
[J
] array and the corresponding indexO
in theoperand
[J
] array, ifO
is a valid index foroutput
:
(output
[0
][O
], ...,output
[N-1
][O
]) =update_computation
(output
[0
][O
], ..., ,output
[N-1
][O
],updates
[0
][U
], ...,updates
[N-1
][U
])
The order in which updates are applied is non-deterministic. So, when multiple indices in updates
refer to the same index in operands
, the corresponding value in output
will be non-deterministic.
Note that the first parameter that is passed into the update_computation
will always be the current value from the output
array and the second parameter will always be the value from the updates
array. This is important specifically for cases when the update_computation
is not commutative .
If indices_are_sorted
is set to true then XLA can assume that start_indices
are sorted (in ascending start_index_map
order) by the user. If they are not then the semantics is implementation defined.
Informally, the scatter op can be viewed as an inverse of the gather op, ie the scatter op updates the elements in the input that are extracted by the corresponding gather op.
For a detailed informal description and examples, refer to the "Informal Description" section under Gather
.
Select
See also XlaBuilder::Select
.
Constructs an output array from elements of two input arrays, based on the values of a predicate array.
Select(pred, on_true, on_false)
Arguments | Type | Semantics |
---|---|---|
pred | XlaOp | array of type PRED |
on_true | XlaOp | array of type T |
on_false | XlaOp | array of type T |
The arrays on_true
and on_false
must have the same shape. This is also the shape of the output array. The array pred
must have the same dimensionality as on_true
and on_false
, with the PRED
element type.
For each element P
of pred
, the corresponding element of the output array is taken from on_true
if the value of P
is true
, and from on_false
if the value of P
is false
. As a restricted form of broadcasting , pred
can be a scalar of type PRED
. In this case, the output array is taken wholly from on_true
if pred
is true
, and from on_false
if pred
is false
.
Example with non-scalar pred
:
let pred: PRED[4] = {true, false, false, true};
let v1: s32[4] = {1, 2, 3, 4};
let v2: s32[4] = {100, 200, 300, 400};
==>
Select(pred, v1, v2) = s32[4]{1, 200, 300, 4};
Example with scalar pred
:
let pred: PRED = true;
let v1: s32[4] = {1, 2, 3, 4};
let v2: s32[4] = {100, 200, 300, 400};
==>
Select(pred, v1, v2) = s32[4]{1, 2, 3, 4};
Selections between tuples are supported. Tuples are considered to be scalar types for this purpose. If on_true
and on_false
are tuples (which must have the same shape!) then pred
has to be a scalar of type PRED
.
SelectAndScatter
See also XlaBuilder::SelectAndScatter
.
This operation can be considered as a composite operation that first computes ReduceWindow
on the operand
array to select an element from each window, and then scatters the source
array to the indices of the selected elements to construct an output array with the same shape as the operand array. The binary select
function is used to select an element from each window by applying it across each window, and it is called with the property that the first parameter's index vector is lexicographically less than the second parameter's index vector. The select
function returns true
if the first parameter is selected and returns false
if the second parameter is selected, and the function must hold transitivity (ie, if select(a, b)
and select(b, c)
are true
, then select(a, c)
is also true
) so that the selected element does not depend on the order of the elements traversed for a given window.
The function scatter
is applied at each selected index in the output array. It takes two scalar parameters:
- Current value at the selected index in the output array
- The scatter value from
source
that applies to the selected index
It combines the two parameters and returns a scalar value that's used to update the value at the selected index in the output array. Initially, all indices of the output array are set to init_value
.
The output array has the same shape as the operand
array and the source
array must have the same shape as the result of applying a ReduceWindow
operation on the operand
array. SelectAndScatter
can be used to backpropagate the gradient values for a pooling layer in a neural network.
SelectAndScatter(operand, select, window_dimensions, window_strides, padding, source, init_value, scatter)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | array of type T over which the windows slide |
select | XlaComputation | binary computation of type T, T -> PRED , to apply to all elements in each window; returns true if the first parameter is selected and returns false if the second parameter is selected |
window_dimensions | ArraySlice<int64> | array of integers for window dimension values |
window_strides | ArraySlice<int64> | array of integers for window stride values |
padding | Padding | padding type for window (Padding::kSame or Padding::kValid) |
source | XlaOp | array of type T with the values to scatter |
init_value | XlaOp | scalar value of type T for the initial value of the output array |
scatter | XlaComputation | binary computation of type T, T -> T , to apply each scatter source element with its destination element |
The figure below shows examples of using SelectAndScatter
, with the select
function computing the maximal value among its parameters. Note that when the windows overlap, as in the figure (2) below, an index of the operand
array may be selected multiple times by different windows. In the figure, the element of value 9 is selected by both of the top windows (blue and red) and the binary addition scatter
function produces the output element of value 8 (2 + 6).

The evaluation order of the scatter
function is arbitrary and may be non-deterministic. Therefore, the scatter
function should not be overly sensitive to reassociation. See the discussion about associativity in the context of Reduce
for more details.
Send
See also XlaBuilder::Send
.
Send(operand, channel_handle)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | data to send (array of type T) |
channel_handle | ChannelHandle | unique identifier for each send/recv pair |
Sends the given operand data to a Recv
instruction in another computation that shares the same channel handle. Does not return any data.
Similar to the Recv
operation, the client API of Send
operation represents synchronous communication, and is internally decomposed into 2 HLO instructions ( Send
and SendDone
) to enable asynchronous data transfers. See also HloInstruction::CreateSend
and HloInstruction::CreateSendDone
.
Send(HloInstruction operand, int64 channel_id)
Initiates an asynchronous transfer of the operand to the resources allocated by the Recv
instruction with the same channel id. Returns a context, which is used by a following SendDone
instruction to wait for the completion of the data transfer. The context is a tuple of {operand (shape), request identifier (U32)} and it can only be used by a SendDone
instruction.
SendDone(HloInstruction context)
Given a context created by a Send
instruction, waits for the data transfer to complete. The instruction does not return any data.
Scheduling of channel instructions
The execution order of the 4 instructions for each channel ( Recv
, RecvDone
, Send
, SendDone
) is as below.

-
Recv
happens beforeSend
-
Send
happens beforeRecvDone
-
Recv
happens beforeRecvDone
-
Send
happens beforeSendDone
When the backend compilers generate a linear schedule for each computation that communicates via channel instructions, there must not be cycles across the computations. For example, below schedules lead to deadlocks.

Slice
See also XlaBuilder::Slice
.
Slicing extracts a sub-array from the input array. The sub-array is of the same rank as the input and contains the values inside a bounding box within the input array where the dimensions and indices of the bounding box are given as arguments to the slice operation.
Slice(operand, start_indices, limit_indices, strides)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | N dimensional array of type T |
start_indices | ArraySlice<int64> | List of N integers containing the starting indices of the slice for each dimension. Values must be greater than or equal to zero. |
limit_indices | ArraySlice<int64> | List of N integers containing the ending indices (exclusive) for the slice for each dimension. Each value must be greater than or equal to the respective start_indices value for the dimension and less than or equal to the size of the dimension. |
strides | ArraySlice<int64> | List of N integers that decides the input stride of the slice. The slice picks every strides[d] element in dimension d . |
1-dimensional example:
let a = {0.0, 1.0, 2.0, 3.0, 4.0}
Slice(a, {2}, {4}) produces:
{2.0, 3.0}
2-dimensional example:
let b =
{ {0.0, 1.0, 2.0},
{3.0, 4.0, 5.0},
{6.0, 7.0, 8.0},
{9.0, 10.0, 11.0} }
Slice(b, {2, 1}, {4, 3}) produces:
{ { 7.0, 8.0},
{10.0, 11.0} }
Sort
See also XlaBuilder::Sort
.
Sort(operands, comparator, dimension, is_stable)
Arguments | Type | Semantics |
---|---|---|
operands | ArraySlice<XlaOp> | The operands to sort. |
comparator | XlaComputation | The comparator computation to use. |
dimension | int64 | The dimension along which to sort. |
is_stable | bool | Whether stable sorting should be used. |
If only one operand is provided:
If the operand is a rank-1 tensor (an array), the result is a sorted array. If you want to sort the array into ascending order, the comparator should perform a less-than comparison. Formally, after the array is sorted, it holds for all index positions
i, j
withi < j
that eithercomparator(value[i], value[j]) = comparator(value[j], value[i]) = false
orcomparator(value[i], value[j]) = true
.If the operand has higher rank, the operand is sorted along the provided dimension. For example, for a rank-2 tensor (a matrix), a dimension value of
0
will independently sort every column, and a dimension value of1
will independently sort each row. If no dimension number is provided, then the last dimension is chosen by default. For the dimension which is sorted, the same sorting order applies as in the rank-1 case.
If n > 1
operands are provided:
All
n
operands must be tensors with the same dimensions. The element types of the tensors may be different.All operands are sorted together, not individually. Conceptually the operands are treated as a tuple. When checking whether the elements of each operand at index positions
i
andj
need to be swapped, the comparator is called with2 * n
scalar parameters, where parameter2 * k
corresponds to the value at positioni
from thek-th
operand, and parameter2 * k + 1
corresponds to the value at positionj
from thek-th
operand. Usually, the comparator would thus compare parameters2 * k
and2 * k + 1
with each other and possibly use other parameter pairs as tie breakers.The result is a tuple that consists of the operands in sorted order (along the provided dimension, as above). The
i-th
operand of the tuple corresponds to thei-th
operand of Sort.
For example, if there are three operands operand0 = [3, 1]
, operand1 = [42, 50]
, operand2 = [-3.0, 1.1]
, and the comparator compares only the values of operand0
with less-than, then the output of the sort is the tuple ([1, 3], [50, 42], [1.1, -3.0])
.
If is_stable
is set to true, the sort is guaranteed to be stable, that is, if there are elements which are considered to be equal by the comparator, the relative order of the equal values is preserved. Two elements e1
and e2
are equal if and only if comparator(e1, e2) = comparator(e2, e1) = false
. By default, is_stable
is set to false.
Top-K
See also the jax.lax.top_k
operation.
TopK(operand)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | N-dimensional array |
k | int64 | Integer specifying the number of top entries. |
comparator | XlaComputation | The comparator computation to use. |
Returns top k
values and their indices as a tuple, along the last dimension of the operand using the given comparator
(for usual topk behavior, it should be strict-greater-than operation).
For example, given strict >
operator, k=1
and the following operand of shape f32[2,3]
:
[[0.1, 0.3, 0.1], [0.7, 0.2, -0.1]]
The TopK application returns the following tuple of shape (f32[2,1], s32[2,1])
:
([[0.3], [0.7]], [[1], [0]])
Transpose
See also the tf.reshape
operation.
Transpose(operand)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | The operand to transpose. |
permutation | ArraySlice<int64> | How to permute the dimensions. |
Permutes the operand dimensions with the given permutation, so ∀ i . 0 ≤ i < rank ⇒ input_dimensions[permutation[i]] = output_dimensions[i]
.
This is the same as Reshape(operand, permutation, Permute(permutation, operand.shape.dimensions)).
TriangularSolve
See also XlaBuilder::TriangularSolve
.
Solves systems of linear equations with lower or upper triangular coefficient matrices by forward- or back-substitution. Broadcasting along leading dimensions, this routine solves one of the matrix systems op(a) * x = b
, or x * op(a) = b
, for the variable x
, given a
and b
, where op(a)
is either op(a) = a
, or op(a) = Transpose(a)
, or op(a) = Conj(Transpose(a))
.
TriangularSolve(a, b, left_side, lower, unit_diagonal, transpose_a)
Arguments | Type | Semantics |
---|---|---|
a | XlaOp | a rank > 2 array of a complex or floating-point type with shape [..., M, M] . |
b | XlaOp | a rank > 2 array of the same type with shape [..., M, K] if left_side is true, [..., K, M] otherwise. |
left_side | bool | indicates whether to solve a system of the form op(a) * x = b ( true ) or x * op(a) = b ( false ). |
lower | bool | whether to use the upper or lower triangle of a . |
unit_diagonal | bool | if true , the diagonal elements of a are assumed to be 1 and not accessed. |
transpose_a | Transpose | whether to use a as is, transpose it or take its conjugate transpose. |
Input data is read only from the lower/upper triangle of a
, depending on the value of lower
. Values from the other triangle are ignored. Output data is returned in the same triangle; the values in the other triangle are implementation-defined and may be anything.
If the rank of a
and b
are greater than 2, they are treated as batches of matrices, where all except the minor 2 dimensions are batch dimensions. a
and b
must have equal batch dimensions.
Tuple
See also XlaBuilder::Tuple
.
A tuple containing a variable number of data handles, each of which has its own shape.
This is analogous to std::tuple
in C++. Conceptually:
let v: f32[10] = f32[10]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
let s: s32 = 5;
let t: (f32[10], s32) = tuple(v, s);
Tuples can be deconstructed (accessed) via the GetTupleElement
operation.
While
See also XlaBuilder::While
.
While(condition, body, init)
Arguments | Type | Semantics |
---|---|---|
condition | XlaComputation | XlaComputation of type T -> PRED which defines the termination condition of the loop. |
body | XlaComputation | XlaComputation of type T -> T which defines the body of the loop. |
init | T | Initial value for the parameter of condition and body . |
Sequentially executes the body
until the condition
fails. This is similar to a typical while loop in many other languages except for the differences and restrictions listed below.
- A
While
node returns a value of typeT
, which is the result from the last execution of thebody
. - The shape of the type
T
is statically determined and must be the same across all iterations.
The T parameters of the computations are initialized with the init
value in the first iteration and are automatically updated to the new result from body
in each subsequent iteration.
One main use case of the While
node is to implement the repeated execution of training in neural networks. Simplified pseudocode is shown below with a graph that represents the computation. The code can be found in while_test.cc
. The type T
in this example is a Tuple
consisting of an int32
for the iteration count and a vector[10]
for the accumulator. For 1000 iterations, the loop keeps adding a constant vector to the accumulator.
// Pseudocode for the computation.
init = {0, zero_vector[10]} // Tuple of int32 and float[10].
result = init;
while (result(0) < 1000) {
iteration = result(0) + 1;
new_vector = result(1) + constant_vector[10];
result = {iteration, new_vector};
}
