以下は、 XlaBuilder
インターフェースで定義された操作のセマンティクスについて説明しています。通常、これらの操作は、 xla_data.proto
の RPC インターフェイスで定義された操作に 1 対 1 でマップされます。
命名法に関する注意: XLA が扱う一般化されたデータ型は、一定の型 (32 ビット float など) の要素を保持する N 次元配列です。ドキュメント全体で、配列は任意次元の配列を表すために使用されます。便宜上、特別なケースにはより具体的で親しみやすい名前が付けられています。たとえば、ベクトルは 1 次元配列で、行列は 2 次元配列です。
結局
XlaBuilder::AfterAll
も参照してください。
AfterAll は可変数のトークンを受け取り、単一のトークンを生成します。トークンは、順序を強制するために副作用のある操作間でスレッド化できるプリミティブ型です。 AfterAll
は、一連の操作の後に操作を順序付けるためのトークンの結合として使用できます。
AfterAll(operands)
引数 | タイプ | セマンティクス |
---|---|---|
operands | XlaOp | トークンの可変数 |
オールギャザー
XlaBuilder::AllGather
も参照してください。
レプリカ間で連結を実行します。
AllGather(operand, all_gather_dim, shard_count, replica_group_ids, channel_id)
引数 | タイプ | セマンティクス |
---|---|---|
operand | XlaOp | レプリカ間で連結する配列。 |
all_gather_dim | int64 | 連結次元。 |
replica_groups | int64 のベクトルのベクトル | 連結が実行されるグループ。 |
channel_id | オプションのint64 | モジュール間通信用のオプションのチャネル ID。 |
-
replica_groups
は、連結が実行されるレプリカ グループのリストです (現在のレプリカのレプリカ ID は、ReplicaId
を使用して取得できます)。各グループ内のレプリカの順序によって、それらの入力が結果に配置される順序が決まります。replica_groups
は空 (この場合、すべてのレプリカは0
からN - 1
の順序で並べられた単一のグループに属します) であるか、レプリカの数と同じ数の要素を含んでいる必要があります。たとえば、replica_groups = {0, 2}, {1, 3}
は、レプリカ0
と2
、および1
と3
の間で連結を実行します。 -
shard_count
は、各レプリカ グループのサイズです。これは、replica_groups
が空の場合に必要です。 -
channel_id
はモジュール間の通信に使用されます。同じchannel_id
を持つall-gather
操作のみが相互に通信できます。
出力シェイプは、入力シェイプのall_gather_dim
をshard_count
倍にしたものです。たとえば、2 つのレプリカがあり、オペランドの値が 2 つのレプリカでそれぞれ[1.0, 2.5]
と[3.0, 5.25]
の場合、 all_gather_dim
が0
であるこの op からの出力値は[1.0, 2.5, 3.0, 5.25]
になります。 [1.0, 2.5, 3.0, 5.25]
両方のレプリカで。
オールリデュース
XlaBuilder::AllReduce
も参照してください。
レプリカ全体でカスタム計算を実行します。
AllReduce(operand, computation, replica_group_ids, channel_id)
引数 | タイプ | セマンティクス |
---|---|---|
operand | XlaOp | レプリカ全体で削減する配列または配列の空でないタプル。 |
computation | XlaComputation | リダクション計算 |
replica_groups | int64 のベクトルのベクトル | 削減が実行されるグループ |
channel_id | オプションのint64 | モジュール間通信用のオプションのチャネル ID |
-
operand
が配列のタプルの場合、タプルの各要素に対して all-reduce が実行されます。 -
replica_groups
は、削減が実行されるレプリカ グループのリストです (現在のレプリカのレプリカ ID は、ReplicaId
を使用して取得できます)。replica_groups
は、空にするか (この場合、すべてのレプリカが 1 つのグループに属します)、レプリカの数と同じ数の要素を含める必要があります。たとえば、replica_groups = {0, 2}, {1, 3}
は、レプリカ0
と2
、および1
と3
の間で削減を実行します。 -
channel_id
はモジュール間の通信に使用されます。同じchannel_id
を持つall-reduce
操作のみが相互に通信できます。
出力形状は入力形状と同じです。たとえば、2 つのレプリカがあり、オペランドの値が 2 つのレプリカでそれぞれ[1.0, 2.5]
と[3.0, 5.25]
である場合、この演算と合計の計算からの出力値は両方で[4.0, 7.75]
になります。レプリカ。入力がタプルの場合、出力もタプルです。
AllReduce
の結果を計算するには、各レプリカから 1 つの入力を取得する必要があるため、あるレプリカがAllReduce
ノードを別のレプリカよりも多く実行すると、前のレプリカは永遠に待機します。レプリカはすべて同じプログラムを実行しているため、これが発生する方法は多くありませんが、while ループの条件がインフィードからのデータに依存し、インフィードされたデータによって while ループがさらに繰り返される場合に発生する可能性があります。あるレプリカで別のレプリカよりも。
すべてからすべて
XlaBuilder::AllToAll
も参照してください。
AllToAll は、すべてのコアからすべてのコアにデータを送信する一括操作です。次の 2 つのフェーズがあります。
- 散布フェーズ。各コアで、オペランドは
split_dimensions
に沿ってsplit_count
個のブロックに分割され、ブロックはすべてのコアに分散されます。たとえば、i 番目のブロックは i 番目のコアに送信されます。 - 収集フェーズ。各コアは、受信したブロックを
concat_dimension
に沿って連結します。
参加するコアは、次の方法で構成できます。
-
replica_groups
: 各 ReplicaGroup には、計算に参加するレプリカ ID のリストが含まれます (現在のレプリカのレプリカ ID は、ReplicaId
を使用して取得できます)。 AllToAll は、指定された順序でサブグループ内に適用されます。たとえば、replica_groups = { {1,2,3}, {4,5,0} }
は、AllToAll がレプリカ{1, 2, 3}
内および収集フェーズで適用され、受信したブロックが1、2、3 の同じ順序で連結されます。次に、レプリカ 4、5、0 内で別の AllToAll が適用され、連結順序も 4、5、0 になりますreplica_groups
が空の場合、すべてのレプリカは 1 つに属します。グループは、出現順に連結されます。
前提条件:
- split_dimension のオペランドの次元サイズは、
split_dimension
で割り切れsplit_count
。 - オペランドの形状がタプルではありません。
AllToAll(operand, split_dimension, concat_dimension, split_count, replica_groups)
引数 | タイプ | セマンティクス |
---|---|---|
operand | XlaOp | n 次元の入力配列 |
split_dimension | int64 | オペランドが分割される次元を指定する間隔[0, n) の値 |
concat_dimension | int64 | 分割されたブロックが連結される次元を指定する区間[0, n) の値 |
split_count | int64 | この操作に参加するコアの数。 replica_groups が空の場合、これはレプリカの数になります。それ以外の場合、これは各グループ内のレプリカの数と同じにする必要があります。 |
replica_groups | ReplicaGroup ベクトル | 各グループには、レプリカ ID のリストが含まれています。 |
以下に Alltoall の例を示します。
XlaBuilder b("alltoall");
auto x = Parameter(&b, 0, ShapeUtil::MakeShape(F32, {4, 16}), "x");
AllToAll(x, /*split_dimension=*/1, /*concat_dimension=*/0, /*split_count=*/4);

この例では、Alltoall に参加している 4 つのコアがあります。各コアで、オペランドは次元 0 に沿って 4 つの部分に分割されるため、各部分の形状は f32[4,4] になります。 4 つの部分がすべてのコアに分散されます。次に、各コアは、受け取った部分を次元 1 の順序またはコア 0 ~ 4 で連結します。したがって、各コアの出力の形状は f32[16,4] になります。
BatchNormGrad
アルゴリズムの詳細な説明については、 XlaBuilder::BatchNormGrad
および元のバッチ正規化に関する論文も参照してください。
バッチノルムの勾配を計算します。
BatchNormGrad(operand, scale, mean, variance, grad_output, epsilon, feature_index)
引数 | タイプ | セマンティクス |
---|---|---|
operand | XlaOp | 正規化する n 次元配列 (x) |
scale | XlaOp | 1 次元配列 (\(\gamma\)) |
mean | XlaOp | 1 次元配列 (\(\mu\)) |
variance | XlaOp | 1 次元配列 (\(\sigma^2\)) |
grad_output | XlaOp | BatchNormTraining に渡される勾配 (\( \nabla y\)) |
epsilon | float | イプシロン値 (\(\epsilon\)) |
feature_index | int64 | operand の特徴次元へのインデックス |
機能次元 ( feature_index
はoperand
の機能次元のインデックス) の各機能について、操作は、他のすべての次元にわたってoperand
、 offset
、およびscale
に関して勾配を計算します。 feature_index
は、 operand
の特徴次元の有効なインデックスでなければなりません。
3 つの勾配は次の式で定義されます ( operand
として 4 次元配列を想定し、特徴次元インデックスl
、バッチ サイズm
、空間サイズw
およびh
を想定)。
\[ \begin{split} c_l&= \frac{1}{mwh}\sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h \left( \nabla y_{ijkl} \frac{x_{ijkl} - \mu_l}{\sigma^2_l+\epsilon} \right) \\\\ d_l&= \frac{1}{mwh}\sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h \nabla y_{ijkl} \\\\ \nabla x_{ijkl} &= \frac{\gamma_{l} }{\sqrt{\sigma^2_{l}+\epsilon} } \left( \nabla y_{ijkl} - d_l - c_l (x_{ijkl} - \mu_{l}) \right) \\\\ \nabla \gamma_l &= \sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h \left( \nabla y_{ijkl} \frac{x_{ijkl} - \mu_l}{\sqrt{\sigma^2_{l}+\epsilon} } \right) \\\\\ \nabla \beta_l &= \sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h \nabla y_{ijkl} \end{split} \]
入力のmean
とvariance
は、バッチおよび空間次元全体のモーメント値を表します。
出力タイプは、3 つのハンドルのタプルです。
出力 | タイプ | セマンティクス |
---|---|---|
grad_operand | XlaOp | 入力operand に対する勾配 (\( \nabla x\)) |
grad_scale | XlaOp | 入力scale に対する勾配 (\( \nabla \gamma\)) |
grad_offset | XlaOp | 入力offset に対する勾配 (\( \nabla \beta\)) |
BatchNormInference
アルゴリズムの詳細な説明については、 XlaBuilder::BatchNormInference
および元のバッチ正規化に関する論文も参照してください。
バッチ次元と空間次元にわたって配列を正規化します。
BatchNormInference(operand, scale, offset, mean, variance, epsilon, feature_index)
引数 | タイプ | セマンティクス |
---|---|---|
operand | XlaOp | 正規化する n 次元配列 |
scale | XlaOp | 1次元配列 |
offset | XlaOp | 1次元配列 |
mean | XlaOp | 1次元配列 |
variance | XlaOp | 1次元配列 |
epsilon | float | イプシロン値 |
feature_index | int64 | operand の特徴次元へのインデックス |
特徴次元 ( feature_index
はoperand
の特徴次元のインデックス) の各特徴に対して、演算は他のすべての次元の平均と分散を計算し、その平均と分散を使用してoperand
の各要素を正規化します。 feature_index
は、 operand
の特徴次元の有効なインデックスでなければなりません。
BatchNormInference
は、各バッチのmean
とvariance
を計算せずにBatchNormTraining
を呼び出すことと同じです。推定値として代わりに入力mean
とvariance
を使用します。この操作の目的は、推論のレイテンシーを短縮することです。そのため、 BatchNormInference
という名前が付けられています。
出力は、入力operand
と同じ形状の n 次元の正規化された配列です。
BatchNormTraining
アルゴリズムの詳細な説明については、 XlaBuilder::BatchNormTraining
およびthe original batch normalization paper
も参照してください。
バッチ次元と空間次元にわたって配列を正規化します。
BatchNormTraining(operand, scale, offset, epsilon, feature_index)
引数 | タイプ | セマンティクス |
---|---|---|
operand | XlaOp | 正規化する n 次元配列 (x) |
scale | XlaOp | 1 次元配列 (\(\gamma\)) |
offset | XlaOp | 1 次元配列 (\(\beta\)) |
epsilon | float | イプシロン値 (\(\epsilon\)) |
feature_index | int64 | operand の特徴次元へのインデックス |
特徴次元 ( feature_index
はoperand
の特徴次元のインデックス) の各特徴に対して、演算は他のすべての次元の平均と分散を計算し、その平均と分散を使用してoperand
の各要素を正規化します。 feature_index
は、 operand
の特徴次元の有効なインデックスでなければなりません。
アルゴリズムは、 operand
\(x\) の各バッチに対して次のようになります。これには、空間次元のサイズとしてw
とh
を持つm
要素が含まれます ( operand
が 4 次元配列であると仮定します)。
特徴ディメンション\(\mu_l=\frac{1}{mwh}\sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h x_{ijkl}\)-placeholder15 の各特徴
l
のバッチ平均 \(\mu_l\) を計算します。バッチ差異を計算します \(\sigma^2_l\):\(\sigma^2_l=\frac{1}{mwh}\sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h (x_{ijkl} - \mu_l)^2\)
正規化、スケーリング、およびシフト:\(y_{ijkl}=\frac{\gamma_l(x_{ijkl}-\mu_l)}{\sqrt[2]{\sigma^2_l+\epsilon} }+\beta_l\)
イプシロン値 (通常は小さい数値) は、ゼロ除算エラーを回避するために追加されます。
出力タイプは、3 つのXlaOp
のタプルです。
出力 | タイプ | セマンティクス |
---|---|---|
output | XlaOp | 入力operand (y) と同じ形状の n 次元配列 |
batch_mean | XlaOp | 1 次元配列 (\(\mu\)) |
batch_var | XlaOp | 1 次元配列 (\(\sigma^2\)) |
batch_mean
とbatch_var
は、上記の式を使用して、バッチ ディメンションと空間ディメンション全体で計算されたモーメントです。
BitcastConvertType
XlaBuilder::BitcastConvertType
も参照してください。
TensorFlow のtf.bitcast
と同様に、データ形状からターゲット形状への要素単位のビットキャスト操作を実行します。入力と出力のサイズは一致する必要があります。たとえば、 s32
要素はビットキャスト ルーチンによってf32
要素になり、1 つのs32
要素は 4 つのs8
要素になります。ビットキャストは低レベルのキャストとして実装されるため、浮動小数点表現が異なるマシンでは異なる結果が得られます。
BitcastConvertType(operand, new_element_type)
引数 | タイプ | セマンティクス |
---|---|---|
operand | XlaOp | 次元 D を持つ型 T の配列 |
new_element_type | PrimitiveType | タイプU |
オペランドとターゲット シェイプの寸法は、変換前後のプリミティブ サイズの比率によって変化する最後の寸法を除いて、一致する必要があります。
ソース要素と宛先要素の型はタプルであってはなりません。
異なる幅のプリミティブ型へのビットキャスト変換
BitcastConvert
HLO 命令は、出力要素タイプT'
のサイズが入力要素T
のサイズと等しくない場合をサポートします。操作全体は概念的にビットキャストであり、基になるバイトを変更しないため、出力要素の形状を変更する必要があります。 B = sizeof(T), B' = sizeof(T')
の場合、2 つのケースが考えられます。
まず、 B > B'
場合、出力 shape はサイズB/B'
の新しい最小次元を取得します。例えば:
f16[10,2]{1,0} %output = f16[10,2]{1,0} bitcast-convert(f32[10]{0} %input)
ルールは有効なスカラーでも同じです。
f16[2]{0} %output = f16[2]{0} bitcast-convert(f32[] %input)
または、 B' > B
の場合、命令では入力形状の最後の論理次元がB'/B
と等しくなる必要があり、この次元は変換中に削除されます。
f32[10]{0} %output = f32[10]{0} bitcast-convert(f16[10,2]{1,0} %input)
異なるビット幅間の変換は要素単位ではないことに注意してください。
ブロードキャスト
XlaBuilder::Broadcast
も参照してください。
配列内のデータを複製して、配列に次元を追加します。
Broadcast(operand, broadcast_sizes)
引数 | タイプ | セマンティクス |
---|---|---|
operand | XlaOp | 複製する配列 |
broadcast_sizes | ArraySlice<int64> | 新しい次元のサイズ |
新しい次元が左側に挿入されます。つまり、 broadcast_sizes
の値が{a0, ..., aN}
で、オペランド shape の次元が{b0, ..., bM}
の場合、出力の shape の次元は{a0, ..., aN, b0, ..., bM}
.
新しい次元は、オペランドのコピーにインデックスを付けます。つまり、
output[i0, ..., iN, j0, ..., jM] = operand[j0, ..., jM]
たとえば、 operand
が値2.0f
のスカラーf32
で、 broadcast_sizes
が{2, 3}
の場合、結果は形状f32[2, 3]
の配列になり、結果のすべての値は2.0f
になります。
BroadcastInDim
XlaBuilder::BroadcastInDim
も参照してください。
配列内のデータを複製することにより、配列のサイズとランクを拡張します。
BroadcastInDim(operand, out_dim_size, broadcast_dimensions)
引数 | タイプ | セマンティクス |
---|---|---|
operand | XlaOp | 複製する配列 |
out_dim_size | ArraySlice<int64> | 目標形状の寸法のサイズ |
broadcast_dimensions | ArraySlice<int64> | オペランド シェイプの各次元が対応するターゲット シェイプの次元 |
Broadcast と似ていますが、どこにでも次元を追加でき、既存の次元をサイズ 1 で拡張できます。
operand
は、 out_dim_size
で記述された形状にブロードキャストされます。 broadcast_dimensions
は、 operand
の次元をターゲット形状の次元にマップします。つまり、オペランドの i 番目の次元は、出力形状の broadcast_dimension[i] 次元にマップされます。 operand
の次元は、サイズが 1 であるか、マップ先の出力形状の次元と同じサイズでなければなりません。残りの次元は、サイズ 1 の次元で埋められます。縮退次元ブロードキャストは、これらの縮退次元に沿ってブロードキャストし、出力形状に到達します。セマンティクスについては、放送ページで詳しく説明されています。
電話
XlaBuilder::Call
も参照してください。
指定された引数で計算を呼び出します。
Call(computation, args...)
引数 | タイプ | セマンティクス |
---|---|---|
computation | XlaComputation | 型T_0, T_1, ..., T_{N-1} -> S |
args | N XlaOp のシーケンス | 任意の型の N 個の引数 |
args
のアリティと型は、 computation
のパラメータと一致する必要があります。 args
を持たなくてもかまいません。
コレスキー
XlaBuilder::Cholesky
も参照してください。
対称 (エルミート) 正定行列のバッチのコレスキー分解を計算します。
Cholesky(a, lower)
引数 | タイプ | セマンティクス |
---|---|---|
a | XlaOp | 複素数型または浮動小数点型のランク > 2 の配列。 |
lower | bool | の上三角または下三角のどちらを使用a か。 |
lower
がtrue
場合、 \( a = l
. l^T \)となる下三角行列l
を計算します。 lower
がfalse
の場合、 \( a = u^T . u \)となる上三角行列u
を計算します。
入力データは、 lower
の値に応じて、 a
の下/上の三角形からのみ読み取られます。他の三角形の値は無視されます。出力データは同じ三角形で返されます。他の三角形の値は実装定義であり、何でもかまいません。
a のランクが 2 より大きい場合a
a
行列のバッチとして扱われます。ここで、マイナーな 2 次元を除くすべてがバッチ次元です。
a
が対称 (エルミート) 正定でない場合、結果は実装定義です。
クランプ
XlaBuilder::Clamp
も参照してください。
最小値と最大値の間の範囲内にオペランドをクランプします。
Clamp(min, operand, max)
引数 | タイプ | セマンティクス |
---|---|---|
min | XlaOp | T 型の配列 |
operand | XlaOp | T 型の配列 |
max | XlaOp | T 型の配列 |
オペランドと最小値および最大値を指定すると、オペランドが最小値と最大値の間の範囲内にある場合はオペランドが返され、オペランドがこの範囲を下回る場合は最小値が返され、オペランドがこの範囲を超える場合は最大値が返されます。つまり、 clamp(a, x, b) = min(max(a, x), b)
です。
3 つの配列はすべて同じ形状でなければなりません。あるいは、ブロードキャストの制限された形式として、 min
および/またはmax
をタイプT
のスカラーにすることができます。
スカラーmin
およびmax
の例:
let operand: s32[3] = {-1, 5, 9};
let min: s32 = 0;
let max: s32 = 6;
==>
Clamp(min, operand, max) = s32[3]{0, 5, 6};
崩壊
XlaBuilder::Collapse
およびtf.reshape
操作も参照してください。
配列の次元を 1 つの次元に縮小します。
Collapse(operand, dimensions)
引数 | タイプ | セマンティクス |
---|---|---|
operand | XlaOp | T 型の配列 |
dimensions | int64 ベクトル | T の次元の順序どおりに連続したサブセット。 |
Collapse は、オペランドの次元の指定されたサブセットを単一の次元に置き換えます。入力引数は、T 型の任意の配列と次元インデックスのコンパイル時定数ベクトルです。次元インデックスは、T の次元の連続したサブセット (次元数が小さいものから大きいものへ) である必要があります。したがって、{0, 1, 2}、{0, 1}、または {1, 2} はすべて有効なディメンション セットですが、{1, 0} または {0, 2} はそうではありません。それらは、元の次元サイズの積に等しい新しい次元サイズで、次元シーケンス内でそれらが置き換えるものと同じ位置にある単一の新しい次元に置き換えられます。次元の最小のdimensions
番号は、これらの次元を折りたたむループ ネスト内で最も変化の遅い次元 (最もメジャー) であり、最大の次元番号は最も変化の速い (最もマイナー) 次元です。より一般的な折りたたみ順序が必要な場合は、 tf.reshape
オペレーターを参照してください。
たとえば、v を 24 要素の配列とします。
let v = f32[4x2x3] { { {10, 11, 12}, {15, 16, 17} },
{ {20, 21, 22}, {25, 26, 27} },
{ {30, 31, 32}, {35, 36, 37} },
{ {40, 41, 42}, {45, 46, 47} } };
// Collapse to a single dimension, leaving one dimension.
let v012 = Collapse(v, {0,1,2});
then v012 == f32[24] {10, 11, 12, 15, 16, 17,
20, 21, 22, 25, 26, 27,
30, 31, 32, 35, 36, 37,
40, 41, 42, 45, 46, 47};
// Collapse the two lower dimensions, leaving two dimensions.
let v01 = Collapse(v, {0,1});
then v01 == f32[4x6] { {10, 11, 12, 15, 16, 17},
{20, 21, 22, 25, 26, 27},
{30, 31, 32, 35, 36, 37},
{40, 41, 42, 45, 46, 47} };
// Collapse the two higher dimensions, leaving two dimensions.
let v12 = Collapse(v, {1,2});
then v12 == f32[8x3] { {10, 11, 12},
{15, 16, 17},
{20, 21, 22},
{25, 26, 27},
{30, 31, 32},
{35, 36, 37},
{40, 41, 42},
{45, 46, 47} };
CollectivePermute
XlaBuilder::CollectivePermute
も参照してください。
CollectivePermute は、レプリカ間でデータを送受信する集合操作です。
CollectivePermute(operand, source_target_pairs)
引数 | タイプ | セマンティクス |
---|---|---|
operand | XlaOp | n 次元の入力配列 |
source_target_pairs | <int64, int64> ベクトル | (source_replica_id, target_replica_id) ペアのリスト。ペアごとに、オペランドがソース レプリカからターゲット レプリカに送信されます。 |
source_target_pair
には次の制限があることに注意してください。
- どの 2 つのペアも、同じターゲット レプリカ ID を持つべきではなく、同じソース レプリカ ID を持つべきではありません。
- レプリカ ID がどのペアのターゲットでもない場合、そのレプリカの出力はテンソルであり、入力と同じ形状の 0 で構成されます。
連結する
XlaBuilder::ConcatInDim
も参照してください。
Concatenate は、複数の配列オペランドから配列を構成します。配列は、各入力配列オペランド (互いに同じランクでなければならない) と同じランクであり、指定された順序で引数を含みます。
Concatenate(operands..., dimension)
引数 | タイプ | セマンティクス |
---|---|---|
operands | N XlaOp のシーケンス | 次元 [L0、L1、...] の型 T の N 配列。 N >= 1 が必要です。 |
dimension | int64 | operands 間で連結される次元を指定する間隔[0, N) の値。 |
寸法を除いて、すべてのdimension
は同じでなければなりません。これは、XLA が「不規則な」配列をサポートしていないためです。また、ランク 0 の値は連結できないことに注意してください (連結が発生するディメンションに名前を付けることができないため)。
1 次元の例:
Concat({ {2, 3}, {4, 5}, {6, 7} }, 0)
>>> {2, 3, 4, 5, 6, 7}
2 次元の例:
let a = {
{1, 2},
{3, 4},
{5, 6},
};
let b = {
{7, 8},
};
Concat({a, b}, 0)
>>> {
{1, 2},
{3, 4},
{5, 6},
{7, 8},
}
図:

条件付き
XlaBuilder::Conditional
も参照してください。
Conditional(pred, true_operand, true_computation, false_operand, false_computation)
引数 | タイプ | セマンティクス |
---|---|---|
pred | XlaOp | PRED 型のスカラ |
true_operand | XlaOp | タイプ \(T_0\)の引数 |
true_computation | XlaComputation | \(T_0 \to S\)型の XlaComputation |
false_operand | XlaOp | タイプ \(T_1\)の引数 |
false_computation | XlaComputation | \(T_1 \to S\)型の XlaComputation |
pred
がtrue
場合はtrue_computation
を実行し、 pred
がfalse
の場合はfalse_computation
を実行し、結果を返します。
true_computation
は、タイプ \(T_0\) の単一の引数を受け取る必要があり、同じタイプでなければならないtrue_operand
で呼び出されます。 false_computation
は、タイプ \(T_1\) の単一の引数を受け取る必要があり、同じタイプでなければならないfalse_operand
で呼び出されます。 true_computation
とfalse_computation
の戻り値の型は同じでなければなりません。
pred
の値に応じて、 true_computation
とfalse_computation
のいずれかが実行されることに注意してください。
Conditional(branch_index, branch_computations, branch_operands)
引数 | タイプ | セマンティクス |
---|---|---|
branch_index | XlaOp | S32 型のスカラ |
branch_computations | N XlaComputation のシーケンス | タイプ \( T_0 \to S , T_1 \to S , ..., T_{N-1} \to S \)の XlaComputations |
branch_operands | N XlaOp のシーケンス | タイプ \( T_0 , T_1 , ..., T_{N-1} \)の引数 |
branch_computations[branch_index]
を実行し、結果を返します。 branch_index
が < 0 または >= N のS32
である場合、 branch_computations[N-1]
がデフォルト ブランチとして実行されます。
各branch_computations[b]
は、タイプT_b
の単一の引数を受け取る必要があり、同じタイプでなければならないbranch_operands[b]
で呼び出されます。各branch_computations[b]
の戻り値の型は同じでなければなりません。
branch_index
の値に応じて、 branch_computations
の 1 つだけが実行されることに注意してください。
Conv (畳み込み)
XlaBuilder::Conv
も参照してください。
ConvWithGeneralPadding と同じですが、パディングは SAME または VALID のいずれかの省略形で指定されます。 SAME パディングは入力 ( lhs
) をゼロでパディングして、ストライディングを考慮しない場合に出力が入力と同じ形状になるようにします。 VALID パディングは単にパディングがないことを意味します。
ConvWithGeneralPadding (畳み込み)
XlaBuilder::ConvWithGeneralPadding
も参照してください。
ニューラル ネットワークで使用される種類の畳み込みを計算します。ここで、畳み込みは、n 次元のベース領域を移動する n 次元のウィンドウと考えることができ、ウィンドウの可能な位置ごとに計算が実行されます。
引数 | タイプ | セマンティクス |
---|---|---|
lhs | XlaOp | 入力のランク n+2 配列 |
rhs | XlaOp | カーネルの重みのランク n+2 配列 |
window_strides | ArraySlice<int64> | カーネルストライドの nd 配列 |
padding | ArraySlice< pair<int64, int64>> | (低、高) パディングの 2 番目の配列 |
lhs_dilation | ArraySlice<int64> | nd lhs 膨張係数配列 |
rhs_dilation | ArraySlice<int64> | nd rhs 膨張係数配列 |
feature_group_count | int64 | 機能グループの数 |
batch_group_count | int64 | バッチ グループの数 |
n を空間次元の数とします。 lhs
引数は、ベース領域を表すランク n+2 の配列です。もちろん rhs も入力ですが、これは入力と呼ばれます。ニューラル ネットワークでは、これらは入力の活性化です。 n+2 次元は、この順序で次のとおりです。
-
batch
: この次元の各座標は、畳み込みが実行される独立した入力を表します。 -
z/depth/features
: ベース領域の各 (y,x) 位置には、この次元に入るベクトルが関連付けられています。 -
spatial_dims
: ウィンドウが移動するベース エリアを定義するn
の空間次元を記述します。
rhs
引数は、畳み込みフィルター/カーネル/ウィンドウを表すランク n+2 の配列です。寸法は次の順序です。
-
output-z
: 出力のz
次元。 -
input-z
: この次元のサイズにfeature_group_count
を掛けた値がz
次元のサイズ (lhs) と等しくなる必要があります。 -
spatial_dims
: ベース エリアを移動する nd ウィンドウを定義するn
の空間次元を記述します。
window_strides
引数は、空間次元における畳み込みウィンドウのストライドを指定します。たとえば、最初の空間次元のストライドが 3 の場合、ウィンドウは最初の空間インデックスが 3 で割り切れる座標にのみ配置できます。
padding
引数は、ベース領域に適用されるゼロ パディングの量を指定します。パディングの量は負にすることができます。負のパディングの絶対値は、畳み込みを行う前に指定された次元から削除する要素の数を示します。 padding[0]
は次元y
のパディングを指定し、 padding[1]
は次元x
のパディングを指定します。各ペアには、最初の要素として低いパディングがあり、2 番目の要素として高いパディングがあります。低いパディングは低いインデックスの方向に適用され、高いパディングは高いインデックスの方向に適用されます。たとえば、 padding[1]
が(2,3)
の場合、2 番目の空間次元の左側に 2 つのゼロ、右側に 3 つのゼロによるパディングがあります。パディングを使用することは、畳み込みを行う前に同じゼロ値を入力 ( lhs
) に挿入することと同じです。
lhs_dilation
およびrhs_dilation
引数は、各空間次元の lhs および rhs にそれぞれ適用される膨張係数を指定します。空間次元の膨張係数が d の場合、その次元の各エントリ間に d-1 個の穴が暗黙的に配置され、配列のサイズが増加します。穴は no-op 値で埋められます。これは畳み込みではゼロを意味します。
rhs の拡張は、アトラス畳み込みとも呼ばれます。詳細については、 tf.nn.atrous_conv2d
を参照してください。 lhs の拡張は、転置畳み込みとも呼ばれます。詳細については、 tf.nn.conv2d_transpose
を参照してください。
グループ化された畳み込みには、 feature_group_count
引数 (デフォルト値 1) を使用できます。 feature_group_count
は、入力および出力特徴次元の両方の除数である必要があります。 feature_group_count
が 1 より大きい場合、概念的には、入力および出力フィーチャ ディメンションとrhs
出力フィーチャ ディメンションがfeature_group_count
個の多数のグループに均等に分割され、各グループがフィーチャの連続したサブシーケンスで構成されることを意味します。 rhs
の入力特徴の次元は、 lhs
の入力特徴の次元をfeature_group_count
で割った値と等しくなる必要があります (したがって、既に入力特徴のグループのサイズを持っています)。 i 番目のグループは、 feature_group_count
の多くの個別の畳み込みを計算するために一緒に使用されます。これらの畳み込みの結果は、出力特徴次元で連結されます。
深さ方向の畳み込みの場合、 feature_group_count
引数は入力フィーチャの次元に設定され、フィルターは[filter_height, filter_width, in_channels, channel_multiplier]
から[filter_height, filter_width, 1, in_channels * channel_multiplier]
に再形成されます。詳細については、 tf.nn.depthwise_conv2d
を参照してください。
batch_group_count
(デフォルト値 1) 引数は、バックプロパゲーション中にグループ化されたフィルターに使用できます。 batch_group_count
は、 lhs
(入力) バッチ ディメンションのサイズの除数である必要があります。 batch_group_count
が 1 より大きい場合、出力バッチ ディメンションのサイズはinput batch / batch_group_count
でなければならないことを意味します。 batch_group_count
は、出力特徴サイズの除数でなければなりません。
出力形状には、次の順序で寸法が含まれます。
-
batch
: このディメンションのサイズにbatch_group_count
を掛けた値が、batch
ディメンションのサイズ (lhs) と等しくなる必要があります。 -
z
: カーネル (rhs
) のoutput-z
と同じサイズ。 -
spatial_dims
:畳み込みウィンドウの有効な配置ごとに 1 つの値。
上の図は、 batch_group_count
フィールドがどのように機能するかを示しています。事実上、各 lhs バッチをbatch_group_count
グループにスライスし、出力フィーチャに対して同じことを行います。次に、これらのグループのそれぞれについて、ペアワイズ畳み込みを行い、出力特徴次元に沿って出力を連結します。他のすべてのディメンション (機能と空間) の操作上のセマンティクスは同じままです。
畳み込みウィンドウの有効な配置は、パディング後のベース領域のストライドとサイズによって決まります。
畳み込みが何をするかを説明するには、2 次元の畳み込みを考えて、出力で固定のbatch
、 z
、 y
、 x
座標を選択します。次に(y,x)
はベース エリア内のウィンドウの隅の位置です (たとえば、空間次元の解釈方法に応じて、左上隅)。これで、ベース領域から取得した 2D ウィンドウができました。各 2D ポイントは 1D ベクトルに関連付けられているため、3D ボックスが得られます。畳み込みカーネルから、出力座標z
を固定したため、3d ボックスも得られます。 2 つのボックスは同じ次元であるため、2 つのボックス間の要素ごとの積の合計を求めることができます (内積に似ています)。それが出力値です。
output-z
がたとえば 5 の場合、ウィンドウの各位置は、出力のz
次元への出力に 5 つの値を生成することに注意してください。これらの値は、畳み込みカーネルのどの部分が使用されるかによって異なります。各output-z
座標に使用される個別の 3d ボックスの値があります。したがって、それぞれに異なるフィルターを使用した 5 つの個別の畳み込みと考えることができます。
パディングとストライディングを使用した 2D 畳み込みの擬似コードを次に示します。
for (b, oz, oy, ox) { // output coordinates
value = 0;
for (iz, ky, kx) { // kernel coordinates and input z
iy = oy*stride_y + ky - pad_low_y;
ix = ox*stride_x + kx - pad_low_x;
if ((iy, ix) inside the base area considered without padding) {
value += input(b, iz, iy, ix) * kernel(oz, iz, ky, kx);
}
}
output(b, oz, oy, ox) = value;
}
ConvertElementType
XlaBuilder::ConvertElementType
も参照してください。
C++ の要素ごとのstatic_cast
と同様に、データ シェイプからターゲット シェイプへの要素ごとの変換操作を実行します。次元は一致する必要があり、変換は要素単位で行われます。たとえば、 s32
要素は、 s32
からf32
への変換ルーチンによってf32
要素になります。
ConvertElementType(operand, new_element_type)
引数 | タイプ | セマンティクス |
---|---|---|
operand | XlaOp | 次元 D を持つ型 T の配列 |
new_element_type | PrimitiveType | タイプU |
オペランドとターゲット シェイプの寸法は一致する必要があります。ソース要素と宛先要素の型はタプルであってはなりません。
T=s32
からU=f32
への変換などの変換では、最も近い偶数への丸めなどの int から float への正規化変換ルーチンが実行されます。
let a: s32[3] = {0, 1, 2};
let b: f32[3] = convert(a, f32);
then b == f32[3]{0.0, 1.0, 2.0}
CrossReplicaSum
総和計算でAllReduce
を実行します。
カスタムコール
XlaBuilder::CustomCall
も参照してください。
計算内でユーザー提供の関数を呼び出します。
CustomCall(target_name, args..., shape)
引数 | タイプ | セマンティクス |
---|---|---|
target_name | string | 関数の名前。このシンボル名を対象とする呼び出し命令が発行されます。 |
args | N XlaOp のシーケンス | 関数に渡される任意の型の N 個の引数。 |
shape | Shape | 関数の出力形状 |
アリティや引数の型に関係なく、関数のシグネチャは同じです。
extern "C" void target_name(void* out, void** in);
たとえば、CustomCall が次のように使用されているとします。
let x = f32[2] {1,2};
let y = f32[2x3] { {10, 20, 30}, {40, 50, 60} };
CustomCall("myfunc", {x, y}, f32[3x3])
myfunc
の実装例を次に示します。
extern "C" void myfunc(void* out, void** in) {
float (&x)[2] = *static_cast<float(*)[2]>(in[0]);
float (&y)[2][3] = *static_cast<float(*)[2][3]>(in[1]);
EXPECT_EQ(1, x[0]);
EXPECT_EQ(2, x[1]);
EXPECT_EQ(10, y[0][0]);
EXPECT_EQ(20, y[0][1]);
EXPECT_EQ(30, y[0][2]);
EXPECT_EQ(40, y[1][0]);
EXPECT_EQ(50, y[1][1]);
EXPECT_EQ(60, y[1][2]);
float (&z)[3][3] = *static_cast<float(*)[3][3]>(out);
z[0][0] = x[1] + y[1][0];
// ...
}
ユーザー提供の関数には副作用があってはならず、その実行は冪等でなければなりません。
ドット
XlaBuilder::Dot
も参照してください。
Dot(lhs, rhs)
引数 | タイプ | セマンティクス |
---|---|---|
lhs | XlaOp | T 型の配列 |
rhs | XlaOp | T 型の配列 |
この操作の正確なセマンティクスは、オペランドのランクによって異なります。
入力 | 出力 | セマンティクス |
---|---|---|
ベクトル [n] dot ベクトル [n] | スカラー | ベクトル内積 |
行列 [mxk] dot ベクトル [k] | ベクトル [m] | 行列ベクトル乗算 |
マトリックス [mxk] dot マトリックス [kxn] | 行列 [mxn] | 行列行列乗算 |
この演算は、 lhs
の 2 番目の次元 (ランク 1 の場合は 1 番目の次元) とrhs
の 1 番目の次元の積の合計を実行します。これらは「縮小された」寸法です。 lhs
とrhs
の縮小された次元は同じサイズでなければなりません。実際には、ベクトル間の内積、ベクトル/行列の乗算、または行列/行列の乗算を実行するために使用できます。
点全般
XlaBuilder::DotGeneral
も参照してください。
DotGeneral(lhs, rhs, dimension_numbers)
引数 | タイプ | セマンティクス |
---|---|---|
lhs | XlaOp | T 型の配列 |
rhs | XlaOp | T 型の配列 |
dimension_numbers | DotDimensionNumbers | 縮小およびバッチ次元数 |
Dot と同じですが、'lhs' と 'rhs' の両方に縮小およびバッチ次元番号を指定できます。
DotDimensionNumbers フィールド | タイプ | セマンティクス |
---|---|---|
'lhs_contracting_dimensions' | 繰り返される int64 | 'lhs' 縮約次元数 |
'rhs_contracting_dimensions' | 繰り返される int64 | 'rhs' 縮約次元数 |
'lhs_batch_dimensions' | 繰り返される int64 | 'lhs' バッチ次元数 |
'rhs_batch_dimensions' | 繰り返される int64 | 'rhs' バッチ次元数 |
DotGeneral は、'dimension_numbers' で指定された縮小ディメンションの積の合計を実行します。
'lhs' と 'rhs' からの関連付けられた縮小次元番号は同じである必要はありませんが、同じ次元サイズを持つ必要があります。
縮小次元数の例:
lhs = { {1.0, 2.0, 3.0},
{4.0, 5.0, 6.0} }
rhs = { {1.0, 1.0, 1.0},
{2.0, 2.0, 2.0} }
DotDimensionNumbers dnums;
dnums.add_lhs_contracting_dimensions(1);
dnums.add_rhs_contracting_dimensions(1);
DotGeneral(lhs, rhs, dnums) -> { {6.0, 12.0},
{15.0, 30.0} }
'lhs' および 'rhs' からの関連付けられたバッチ次元番号は、同じ次元サイズでなければなりません。
バッチ次元数の例 (バッチ サイズ 2、2x2 行列):
lhs = { { {1.0, 2.0},
{3.0, 4.0} },
{ {5.0, 6.0},
{7.0, 8.0} } }
rhs = { { {1.0, 0.0},
{0.0, 1.0} },
{ {1.0, 0.0},
{0.0, 1.0} } }
DotDimensionNumbers dnums;
dnums.add_lhs_contracting_dimensions(2);
dnums.add_rhs_contracting_dimensions(1);
dnums.add_lhs_batch_dimensions(0);
dnums.add_rhs_batch_dimensions(0);
DotGeneral(lhs, rhs, dnums) -> { { {1.0, 2.0},
{3.0, 4.0} },
{ {5.0, 6.0},
{7.0, 8.0} } }
入力 | 出力 | セマンティクス |
---|---|---|
[b0, m, k] dot [b0, k, n] | [b0、m、n] | バッチ処理 |
[b0, b1, m, k] dot [b0, b1, k, n] | [b0、b1、m、n] | バッチ処理 |
結果の次元番号は、バッチ次元で始まり、次に「lhs」非収縮/非バッチ次元、最後に「rhs」非収縮/非バッチ次元になります。
ダイナミックスライス
XlaBuilder::DynamicSlice
も参照してください。
DynamicSlice は、動的start_indices
で入力配列からサブ配列を抽出します。各次元のスライスのサイズはsize_indices
に渡され、各次元の排他的なスライス間隔の終点を指定します: [開始, 開始 + サイズ)。 start_indices
の形状は、次元サイズがoperand
のランクに等しいランク == 1 でなければなりません。
DynamicSlice(operand, start_indices, size_indices)
引数 | タイプ | セマンティクス |
---|---|---|
operand | XlaOp | T 型の N 次元配列 |
start_indices | N XlaOp のシーケンス | 各次元のスライスの開始インデックスを含む N スカラー整数のリスト。 Value must be greater than or equal to zero. |
size_indices | ArraySlice<int64> | List of N integers containing the slice size for each dimension. Each value must be strictly greater than zero, and start + size must be less than or equal to the size of the dimension to avoid wrapping modulo dimension size. |
The effective slice indices are computed by applying the following transformation for each index i
in [1, N)
before performing the slice:
start_indices[i] = clamp(start_indices[i], 0, operand.dimension_size[i] - size_indices[i])
This ensures that the extracted slice is always in-bounds with respect to the operand array. If the slice is in-bounds before the transformation is applied, the transformation has no effect.
1-dimensional example:
let a = {0.0, 1.0, 2.0, 3.0, 4.0}
let s = {2}
DynamicSlice(a, s, {2}) produces:
{2.0, 3.0}
2-dimensional example:
let b =
{ {0.0, 1.0, 2.0},
{3.0, 4.0, 5.0},
{6.0, 7.0, 8.0},
{9.0, 10.0, 11.0} }
let s = {2, 1}
DynamicSlice(b, s, {2, 2}) produces:
{ { 7.0, 8.0},
{10.0, 11.0} }
DynamicUpdateSlice
See also XlaBuilder::DynamicUpdateSlice
.
DynamicUpdateSlice generates a result which is the value of the input array operand
, with a slice update
overwritten at start_indices
. The shape of update
determines the shape of the sub-array of the result which is updated. The shape of start_indices
must be rank == 1, with dimension size equal to the rank of operand
.
DynamicUpdateSlice(operand, update, start_indices)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | N dimensional array of type T |
update | XlaOp | N dimensional array of type T containing the slice update. Each dimension of update shape must be strictly greater than zero, and start + update must be less than or equal to the operand size for each dimension to avoid generating out-of-bounds update indices. |
start_indices | sequence of N XlaOp | List of N scalar integers containing the starting indices of the slice for each dimension. Value must be greater than or equal to zero. |
The effective slice indices are computed by applying the following transformation for each index i
in [1, N)
before performing the slice:
start_indices[i] = clamp(start_indices[i], 0, operand.dimension_size[i] - update.dimension_size[i])
This ensures that the updated slice is always in-bounds with respect to the operand array. If the slice is in-bounds before the transformation is applied, the transformation has no effect.
1-dimensional example:
let a = {0.0, 1.0, 2.0, 3.0, 4.0}
let u = {5.0, 6.0}
let s = {2}
DynamicUpdateSlice(a, u, s) produces:
{0.0, 1.0, 5.0, 6.0, 4.0}
2-dimensional example:
let b =
{ {0.0, 1.0, 2.0},
{3.0, 4.0, 5.0},
{6.0, 7.0, 8.0},
{9.0, 10.0, 11.0} }
let u =
{ {12.0, 13.0},
{14.0, 15.0},
{16.0, 17.0} }
let s = {1, 1}
DynamicUpdateSlice(b, u, s) produces:
{ {0.0, 1.0, 2.0},
{3.0, 12.0, 13.0},
{6.0, 14.0, 15.0},
{9.0, 16.0, 17.0} }
Element-wise binary arithmetic operations
See also XlaBuilder::Add
.
A set of element-wise binary arithmetic operations is supported.
Op(lhs, rhs)
Where Op
is one of Add
(addition), Sub
(subtraction), Mul
(multiplication), Div
(division), Rem
(remainder), Max
(maximum), Min
(minimum), LogicalAnd
(logical AND), or LogicalOr
(logical OR).
Arguments | Type | Semantics |
---|---|---|
lhs | XlaOp | left-hand-side operand: array of type T |
rhs | XlaOp | right-hand-side operand: array of type T |
The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.
When Op
is Rem
, the sign of the result is taken from the dividend, and the absolute value of the result is always less than the divisor's absolute value.
Integer division overflow (signed/unsigned division/remainder by zero or signed division/remainder of INT_SMIN
with -1
) produces an implementation defined value.
An alternative variant with different-rank broadcasting support exists for these operations:
Op(lhs, rhs, broadcast_dimensions)
Where Op
is the same as above. This variant of the operation should be used for arithmetic operations between arrays of different ranks (such as adding a matrix to a vector).
The additional broadcast_dimensions
operand is a slice of integers used to expand the rank of the lower-rank operand up to the rank of the higher-rank operand. broadcast_dimensions
maps the dimensions of the lower-rank shape to the dimensions of the higher-rank shape. The unmapped dimensions of the expanded shape are filled with dimensions of size one. Degenerate-dimension broadcasting then broadcasts the shapes along these degenerate dimensions to equalize the shapes of both operands. The semantics are described in detail on the broadcasting page .
Element-wise comparison operations
See also XlaBuilder::Eq
.
A set of standard element-wise binary comparison operations is supported. Note that standard IEEE 754 floating-point comparison semantics apply when comparing floating-point types.
Op(lhs, rhs)
Where Op
is one of Eq
(equal-to), Ne
(not equal-to), Ge
(greater-or-equal-than), Gt
(greater-than), Le
(less-or-equal-than), Lt
(less-than). Another set of operators, EqTotalOrder, NeTotalOrder, GeTotalOrder, GtTotalOrder, LeTotalOrder, and LtTotalOrder, provide the same functionalities, except that they additionally support a total order over the floating point numbers, by enforcing -NaN < -Inf < -Finite < -0 < +0 < +Finite < +Inf < +NaN.
Arguments | Type | Semantics |
---|---|---|
lhs | XlaOp | left-hand-side operand: array of type T |
rhs | XlaOp | right-hand-side operand: array of type T |
The arguments' shapes have to be either similar or compatible. See the broadcasting documentation about what it means for shapes to be compatible. The result of an operation has a shape which is the result of broadcasting the two input arrays with the element type PRED
. In this variant, operations between arrays of different ranks are not supported, unless one of the operands is a scalar.
An alternative variant with different-rank broadcasting support exists for these operations:
Op(lhs, rhs, broadcast_dimensions)
Where Op
is the same as above. This variant of the operation should be used for comparison operations between arrays of different ranks (such as adding a matrix to a vector).
The additional broadcast_dimensions
operand is a slice of integers specifying the dimensions to use for broadcasting the operands. The semantics are described in detail on the broadcasting page .
Element-wise unary functions
XlaBuilder supports these element-wise unary functions:
Abs(operand)
Element-wise abs x -> |x|
.
Ceil(operand)
Element-wise ceil x -> ⌈x⌉
.
Cos(operand)
Element-wise cosine x -> cos(x)
.
Exp(operand)
Element-wise natural exponential x -> e^x
.
Floor(operand)
Element-wise floor x -> ⌊x⌋
.
Imag(operand)
Element-wise imaginary part of a complex (or real) shape. x -> imag(x)
. If the operand is a floating point type, returns 0.
IsFinite(operand)
Tests whether each element of operand
is finite, ie, is not positive or negative infinity, and is not NaN
. Returns an array of PRED
values with the same shape as the input, where each element is true
if and only if the corresponding input element is finite.
Log(operand)
Element-wise natural logarithm x -> ln(x)
.
LogicalNot(operand)
Element-wise logical not x -> !(x)
.
Logistic(operand)
Element-wise logistic function computation x -> logistic(x)
.
PopulationCount(operand)
Computes the number of bits set in each element of operand
.
Neg(operand)
Element-wise negation x -> -x
.
Real(operand)
Element-wise real part of a complex (or real) shape. x -> real(x)
. If the operand is a floating point type, returns the same value.
Rsqrt(operand)
Element-wise reciprocal of square root operation x -> 1.0 / sqrt(x)
.
Sign(operand)
Element-wise sign operation x -> sgn(x)
where
\[\text{sgn}(x) = \begin{cases} -1 & x < 0\\ -0 & x = -0\\ NaN & x = NaN\\ +0 & x = +0\\ 1 & x > 0 \end{cases}\]
using the comparison operator of the element type of operand
.
Sqrt(operand)
Element-wise square root operation x -> sqrt(x)
.
Cbrt(operand)
Element-wise cubic root operation x -> cbrt(x)
.
Tan(operand)
Element-wise tangent x -> tan(x)
.
Tanh(operand)
Element-wise hyperbolic tangent x -> tanh(x)
.
Round(operand)
Element-wise rounding, ties away from zero.
RoundNearestEven(operand)
Element-wise rounding, ties to nearest even.
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | The operand to the function |
The function is applied to each element in the operand
array, resulting in an array with the same shape. It is allowed for operand
to be a scalar (rank 0).
Fft
The XLA FFT operation implements the forward and inverse Fourier Transforms for real and complex inputs/outputs. Multidimensional FFTs on up to 3 axes are supported.
See also XlaBuilder::Fft
.
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | The array we are Fourier transforming. |
fft_type | FftType | See the table below. |
fft_length | ArraySlice<int64> | The time-domain lengths of the axes being transformed. This is needed in particular for IRFFT to right-size the innermost axis, since RFFT(fft_length=[16]) has the same output shape as RFFT(fft_length=[17]) . |
FftType | Semantics |
---|---|
FFT | Forward complex-to-complex FFT. Shape is unchanged. |
IFFT | Inverse complex-to-complex FFT. Shape is unchanged. |
RFFT | Forward real-to-complex FFT. Shape of the innermost axis is reduced to fft_length[-1] // 2 + 1 if fft_length[-1] is a non-zero value, omitting the reversed conjugate part of the transformed signal beyond the Nyquist frequency. |
IRFFT | Inverse real-to-complex FFT (ie takes complex, returns real). Shape of the innermost axis is expanded to fft_length[-1] if fft_length[-1] is a non-zero value, inferring the part of the transformed signal beyond the Nyquist frequency from the reverse conjugate of the 1 to fft_length[-1] // 2 + 1 entries. |
Multidimensional FFT
When more than 1 fft_length
is provided, this is equivalent to applying a cascade of FFT operations to each of the innermost axes. Note that for the real->complex and complex->real cases, the innermost axis transform is (effectively) performed first (RFFT; last for IRFFT), which is why the innermost axis is the one which changes size. Other axis transforms will then be complex->complex.
Implementation details
CPU FFT is backed by Eigen's TensorFFT. GPU FFT uses cuFFT.
Gather
The XLA gather operation stitches together several slices (each slice at a potentially different runtime offset) of an input array.
General Semantics
See also XlaBuilder::Gather
. For a more intuitive description, see the "Informal Description" section below.
gather(operand, start_indices, offset_dims, collapsed_slice_dims, slice_sizes, start_index_map)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | The array we're gathering from. |
start_indices | XlaOp | Array containing the starting indices of the slices we gather. |
index_vector_dim | int64 | The dimension in start_indices that "contains" the starting indices. See below for a detailed description. |
offset_dims | ArraySlice<int64> | The set of dimensions in the output shape that offset into an array sliced from operand. |
slice_sizes | ArraySlice<int64> | slice_sizes[i] is the bounds for the slice on dimension i . |
collapsed_slice_dims | ArraySlice<int64> | The set of dimensions in each slice that are collapsed away. These dimensions must have size 1. |
start_index_map | ArraySlice<int64> | A map that describes how to map indices in start_indices to legal indices into operand. |
indices_are_sorted | bool | Whether the indices are guaranteed to be sorted by the caller. |
unique_indices | bool | Whether the indices are guaranteed to be unique by the caller. |
For convenience, we label dimensions in the output array not in offset_dims
as batch_dims
.
The output is an array of rank batch_dims.size
+ offset_dims.size
.
The operand.rank
must equal the sum of offset_dims.size
and collapsed_slice_dims.size
. Also, slice_sizes.size
has to be equal to operand.rank
.
If index_vector_dim
is equal to start_indices.rank
we implicitly consider start_indices
to have a trailing 1
dimension (ie if start_indices
was of shape [6,7]
and index_vector_dim
is 2
then we implicitly consider the shape of start_indices
to be [6,7,1]
).
The bounds for the output array along dimension i
is computed as follows:
If
i
is present inbatch_dims
(ie is equal tobatch_dims[k]
for somek
) then we pick the corresponding dimension bounds out ofstart_indices.shape
, skippingindex_vector_dim
(ie pickstart_indices.shape.dims
[k
] ifk
<index_vector_dim
andstart_indices.shape.dims
[k
+1
] otherwise).If
i
is present inoffset_dims
(ie equal tooffset_dims
[k
] for somek
) then we pick the corresponding bound out ofslice_sizes
after accounting forcollapsed_slice_dims
(ie we pickadjusted_slice_sizes
[k
] whereadjusted_slice_sizes
isslice_sizes
with the bounds at indicescollapsed_slice_dims
removed).
Formally, the operand index In
corresponding to a given output index Out
is calculated as follows:
Let
G
= {Out
[k
] fork
inbatch_dims
}. UseG
to slice out a vectorS
such thatS
[i
] =start_indices
[Combine(G
,i
)] where Combine(A, b) inserts b at positionindex_vector_dim
into A. Note that this is well defined even ifG
is empty -- ifG
is empty thenS
=start_indices
.Create a starting index,
S
in
, intooperand
usingS
by scatteringS
usingstart_index_map
. More precisely:S
in
[start_index_map
[k
]] =S
[k
] ifk
<start_index_map.size
.S
in
[_
] =0
otherwise.
Create an index
O
in
intooperand
by scattering the indices at the offset dimensions inOut
according to thecollapsed_slice_dims
set. More precisely:O
in
[remapped_offset_dims
(k
)] =Out
[offset_dims
[k
]] ifk
<offset_dims.size
(remapped_offset_dims
is defined below).O
in
[_
] =0
otherwise.
In
isO
in
+S
in
where + is element-wise addition.
remapped_offset_dims
is a monotonic function with domain [ 0
, offset_dims.size
) and range [ 0
, operand.rank
) \ collapsed_slice_dims
. So if, eg, offset_dims.size
is 4
, operand.rank
is 6
and collapsed_slice_dims
is { 0
, 2
} then remapped_offset_dims
is { 0
→ 1
, 1
→ 3
, 2
→ 4
, 3
→ 5
}.
If indices_are_sorted
is set to true then XLA can assume that start_indices
are sorted (in ascending start_index_map
order) by the user. If they are not then the semantics is implementation defined.
If unique_indices
is set to true then XLA can assume that all element scattered to are unique. So XLA could use non-atomic operations. If unique_indices
is set to true and the indices being scattered to are not unique then the semantics is implementation defined.
Informal Description and Examples
Informally, every index Out
in the output array corresponds to an element E
in the operand array, computed as follows:
We use the batch dimensions in
Out
to look up a starting index fromstart_indices
.We use
start_index_map
to map the starting index (whose size may be less than operand.rank) to a "full" starting index into theoperand
.We dynamic-slice out a slice with size
slice_sizes
using the full starting index.We reshape the slice by collapsing the
collapsed_slice_dims
dimensions. Since all collapsed slice dimensions must have a bound of 1, this reshape is always legal.We use the offset dimensions in
Out
to index into this slice to get the input element,E
, corresponding to output indexOut
.
index_vector_dim
is set to start_indices.rank
- 1
in all of the examples that follow. More interesting values for index_vector_dim
do not change the operation fundamentally, but make the visual representation more cumbersome.
To get an intuition on how all of the above fits together, let's look at an example that gathers 5 slices of shape [8,6]
from a [16,11]
array. The position of a slice into the [16,11]
array can be represented as an index vector of shape S64[2]
, so the set of 5 positions can be represented as a S64[5,2]
array.
The behavior of the gather operation can then be depicted as an index transformation that takes [ G
, O
0
, O
1
], an index in the output shape, and maps it to an element in the input array in the following way:
We first select an ( X
, Y
) vector from the gather indices array using G
. The element in the output array at index [ G
, O
0
, O
1
] is then the element in the input array at index [ X
+ O
0
, Y
+ O
1
].
slice_sizes
is [8,6]
, which decides the range of O 0
and O 1
, and this in turn decides the bounds of the slice.
This gather operation acts as a batch dynamic slice with G
as the batch dimension.
The gather indices may be multidimensional. For instance, a more general version of the example above using a "gather indices" array of shape [4,5,2]
would translate indices like this:
Again, this acts as a batch dynamic slice G
0
and G
1
as the batch dimensions. The slice size is still [8,6]
.
The gather operation in XLA generalizes the informal semantics outlined above in the following ways:
We can configure which dimensions in the output shape are the offset dimensions (dimensions containing
O
0
,O
1
in the last example). The output batch dimensions (dimensions containingG
0
,G
1
in the last example) are defined to be the output dimensions that are not offset dimensions.The number of output offset dimensions explicitly present in the output shape may be smaller than the input rank. These "missing" dimensions, which are listed explicitly as
collapsed_slice_dims
, must have a slice size of1
. Since they have a slice size of1
the only valid index for them is0
and eliding them does not introduce ambiguity.The slice extracted from the "Gather Indices" array ((
X
,Y
) in the last example) may have fewer elements than the input array rank, and an explicit mapping dictates how the index should be expanded to have the same rank as the input.
As a final example, we use (2) and (3) to implement tf.gather_nd
:
G
0
and G
1
are used to slice out a starting index from the gather indices array as usual, except the starting index has only one element, X
. Similarly, there is only one output offset index with the value O
0
. However, before being used as indices into the input array, these are expanded in accordance to "Gather Index Mapping" ( start_index_map
in the formal description) and "Offset Mapping" ( remapped_offset_dims
in the formal description) into [ X
, 0
] and [ 0
, O
0
] respectively, adding up to [ X
, O
0
]. In other words, the output index [ G
0
, G
1
, O
0
] maps to the input index [ GatherIndices
[ G
0
, G
1
, 0
], O
0
] which gives us the semantics for tf.gather_nd
.
slice_sizes
for this case is [1,11]
. Intuitively this means that every index X
in the gather indices array picks an entire row and the result is the concatenation of all these rows.
GetDimensionSize
See also XlaBuilder::GetDimensionSize
.
Returns the size of the given dimension of the operand. The operand must be array shaped.
GetDimensionSize(operand, dimension)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | n dimensional input array |
dimension | int64 | A value in the interval [0, n) that specifies the dimension |
SetDimensionSize
See also XlaBuilder::SetDimensionSize
.
Sets the dynamic size of XlaOp's given dimension. The operand must be array shaped.
SetDimensionSize(operand, size, dimension)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | n dimensional input array. |
size | XlaOp | int32 representing the runtime dynamic size. |
dimension | int64 | A value in the interval [0, n) that specifies the dimension. |
Pass through the operand as result, with dynamic dimension tracked by the compiler.
Padded values will be ignored by downstream reduction ops.
let v: f32[10] = f32[10]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
let five: s32 = 5;
let six: s32 = 6;
// Setting dynamic dimension size doesn't change the upper bound of the static
// shape.
let padded_v_five: f32[10] = set_dimension_size(v, five, /*dimension=*/0);
let padded_v_six: f32[10] = set_dimension_size(v, six, /*dimension=*/0);
// sum == 1 + 2 + 3 + 4 + 5
let sum:f32[] = reduce_sum(padded_v_five);
// product == 1 * 2 * 3 * 4 * 5
let product:f32[] = reduce_product(padded_v_five);
// Changing padding size will yield different result.
// sum == 1 + 2 + 3 + 4 + 5 + 6
let sum:f32[] = reduce_sum(padded_v_six);
GetTupleElement
See also XlaBuilder::GetTupleElement
.
Indexes into a tuple with a compile-time-constant value.
The value must be a compile-time-constant so that shape inference can determine the type of the resulting value.
This is analogous to std::get<int N>(t)
in C++. Conceptually:
let v: f32[10] = f32[10]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
let s: s32 = 5;
let t: (f32[10], s32) = tuple(v, s);
let element_1: s32 = gettupleelement(t, 1); // Inferred shape matches s32.
See also tf.tuple
.
Infeed
See also XlaBuilder::Infeed
.
Infeed(shape)
Argument | Type | Semantics |
---|---|---|
shape | Shape | Shape of the data read from the Infeed interface. The layout field of the shape must be set to match the layout of the data sent to the device; otherwise its behavior is undefined. |
Reads a single data item from the implicit Infeed streaming interface of the device, interpreting the data as the given shape and its layout, and returns a XlaOp
of the data. Multiple Infeed operations are allowed in a computation, but there must be a total order among the Infeed operations. For example, two Infeeds in the code below have a total order since there is a dependency between the while loops.
result1 = while (condition, init = init_value) {
Infeed(shape)
}
result2 = while (condition, init = result1) {
Infeed(shape)
}
Nested tuple shapes are not supported. For an empty tuple shape, the Infeed operation is effectively a no-op and proceeds without reading any data from the Infeed of the device.
Iota
See also XlaBuilder::Iota
.
Iota(shape, iota_dimension)
Builds a constant literal on device rather than a potentially large host transfer. Creates an array that has specified shape and holds values starting at zero and incrementing by one along the specified dimension. For floating-point types, the produced array is equivalent to ConvertElementType(Iota(...))
where the Iota
is of integral type and the conversion is to the floating-point type.
Arguments | Type | Semantics |
---|---|---|
shape | Shape | Shape of the array created by Iota() |
iota_dimension | int64 | The dimension to increment along. |
For example, Iota(s32[4, 8], 0)
returns
[[0, 0, 0, 0, 0, 0, 0, 0 ],
[1, 1, 1, 1, 1, 1, 1, 1 ],
[2, 2, 2, 2, 2, 2, 2, 2 ],
[3, 3, 3, 3, 3, 3, 3, 3 ]]
Iota(s32[4, 8], 1)
returns
[[0, 1, 2, 3, 4, 5, 6, 7 ],
[0, 1, 2, 3, 4, 5, 6, 7 ],
[0, 1, 2, 3, 4, 5, 6, 7 ],
[0, 1, 2, 3, 4, 5, 6, 7 ]]
Map
See also XlaBuilder::Map
.
Map(operands..., computation)
Arguments | Type | Semantics |
---|---|---|
operands | sequence of N XlaOp s | N arrays of types T 0..T {N-1} |
computation | XlaComputation | computation of type T_0, T_1, ..., T_{N + M -1} -> S with N parameters of type T and M of arbitrary type |
dimensions | int64 array | array of map dimensions |
Applies a scalar function over the given operands
arrays, producing an array of the same dimensions where each element is the result of the mapped function applied to the corresponding elements in the input arrays.
The mapped function is an arbitrary computation with the restriction that it has N inputs of scalar type T
and a single output with type S
. The output has the same dimensions as the operands except that the element type T is replaced with S.
For example: Map(op1, op2, op3, computation, par1)
maps elem_out <- computation(elem1, elem2, elem3, par1)
at each (multi-dimensional) index in the input arrays to produce the output array.
OptimizationBarrier
Blocks any optimization pass from moving computations across the barrier.
Ensures that all inputs are evaluated before any operators that depend on the barrier's outputs.
Pad
See also XlaBuilder::Pad
.
Pad(operand, padding_value, padding_config)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | array of type T |
padding_value | XlaOp | scalar of type T to fill in the added padding |
padding_config | PaddingConfig | padding amount on both edges (low, high) and between the elements of each dimension |
Expands the given operand
array by padding around the array as well as between the elements of the array with the given padding_value
. padding_config
specifies the amount of edge padding and the interior padding for each dimension.
PaddingConfig
is a repeated field of PaddingConfigDimension
, which contains three fields for each dimension: edge_padding_low
, edge_padding_high
, and interior_padding
.
edge_padding_low
and edge_padding_high
specify the amount of padding added at the low-end (next to index 0) and the high-end (next to the highest index) of each dimension respectively. The amount of edge padding can be negative -- the absolute value of negative padding indicates the number of elements to remove from the specified dimension.
interior_padding
specifies the amount of padding added between any two elements in each dimension; it may not be negative. Interior padding occurs logically before edge padding, so in the case of negative edge padding, elements are removed from the interior-padded operand.
This operation is a no-op if the edge padding pairs are all (0, 0) and the interior padding values are all 0. The figure below shows examples of different edge_padding
and interior_padding
values for a two-dimensional array.

Recv
See also XlaBuilder::Recv
.
Recv(shape, channel_handle)
Arguments | Type | Semantics |
---|---|---|
shape | Shape | shape of the data to receive |
channel_handle | ChannelHandle | unique identifier for each send/recv pair |
Receives data of the given shape from a Send
instruction in another computation that shares the same channel handle. Returns a XlaOp for the received data.
The client API of Recv
operation represents synchronous communication. However, the instruction is internally decomposed into 2 HLO instructions ( Recv
and RecvDone
) to enable asynchronous data transfers. See also HloInstruction::CreateRecv
and HloInstruction::CreateRecvDone
.
Recv(const Shape& shape, int64 channel_id)
Allocates resources required to receive data from a Send
instruction with the same channel_id. Returns a context for the allocated resources, which is used by a following RecvDone
instruction to wait for the completion of the data transfer. The context is a tuple of {receive buffer (shape), request identifier (U32)} and it can only be used by a RecvDone
instruction.
RecvDone(HloInstruction context)
Given a context created by a Recv
instruction, waits for the data transfer to complete and returns the received data.
Reduce
See also XlaBuilder::Reduce
.
Applies a reduction function to one or more arrays in parallel.
Reduce(operands..., init_values..., computation, dimensions)
Arguments | Type | Semantics |
---|---|---|
operands | Sequence of N XlaOp | N arrays of types T_0, ..., T_{N-1} . |
init_values | Sequence of N XlaOp | N scalars of types T_0, ..., T_{N-1} . |
computation | XlaComputation | computation of type T_0, ..., T_{N-1}, T_0, ..., T_{N-1} -> Collate(T_0, ..., T_{N-1}) . |
dimensions | int64 array | unordered array of dimensions to reduce. |
Where:
- N is required to be greater or equal to 1.
- The computation has to be "roughly" associative (see below).
- All input arrays must have the same dimensions.
- All initial values have to form an identity under
computation
. - If
N = 1
,Collate(T)
isT
. - If
N > 1
,Collate(T_0, ..., T_{N-1})
is a tuple ofN
elements of typeT
.
This operation reduces one or more dimensions of each input array into scalars. The rank of each returned array is rank(operand) - len(dimensions)
. The output of the op is Collate(Q_0, ..., Q_N)
where Q_i
is an array of type T_i
, the dimensions of which are described below.
Different backends are allowed to reassociate the reduction computation. This can lead to numerical differences, as some reduction functions like addition are not associative for floats. However, if the range of the data is limited, floating-point addition is close enough to being associative for most practical uses.
Examples
When reducing across one dimension in a single 1D array with values [10, 11, 12, 13]
, with reduction function f
(this is computation
) then that could be computed as
f(10, f(11, f(12, f(init_value, 13)))
but there are also many other possibilities, eg
f(init_value, f(f(10, f(init_value, 11)), f(f(init_value, 12), f(init_value, 13))))
The following is a rough pseudo-code example of how reduction could be implemented, using summation as the reduction computation with an initial value of 0.
result_shape <- remove all dims in dimensions from operand_shape
# Iterate over all elements in result_shape. The number of r's here is equal
# to the rank of the result
for r0 in range(result_shape[0]), r1 in range(result_shape[1]), ...:
# Initialize this result element
result[r0, r1...] <- 0
# Iterate over all the reduction dimensions
for d0 in range(dimensions[0]), d1 in range(dimensions[1]), ...:
# Increment the result element with the value of the operand's element.
# The index of the operand's element is constructed from all ri's and di's
# in the right order (by construction ri's and di's together index over the
# whole operand shape).
result[r0, r1...] += operand[ri... di]
Here's an example of reducing a 2D array (matrix). The shape has rank 2, dimension 0 of size 2 and dimension 1 of size 3:

Results of reducing dimensions 0 or 1 with an "add" function:

Note that both reduction results are 1D arrays. The diagram shows one as column and another as row just for visual convenience.
For a more complex example, here is a 3D array. Its rank is 3, dimension 0 of size 4, dimension 1 of size 2 and dimension 2 of size 3. For simplicity, the values 1 to 6 are replicated across dimension 0.

Similarly to the 2D example, we can reduce just one dimension. If we reduce dimension 0, for example, we get a rank-2 array where all values across dimension 0 were folded into a scalar:
| 4 8 12 |
| 16 20 24 |
If we reduce dimension 2, we also get a rank-2 array where all values across dimension 2 were folded into a scalar:
| 6 15 |
| 6 15 |
| 6 15 |
| 6 15 |
Note that the relative order between the remaining dimensions in the input is preserved in the output, but some dimensions may get assigned new numbers (since the rank changes).
We can also reduce multiple dimensions. Add-reducing dimensions 0 and 1 produces the 1D array [20, 28, 36]
.
Reducing the 3D array over all its dimensions produces the scalar 84
.
Variadic Reduce
When N > 1
, reduce function application is slightly more complex, as it is applied simultaneously to all inputs. The operands are supplied to the computation in the following order:
- Running reduced value for the first operand
- ...
- Running reduced value for the N'th operand
- Input value for the first operand
- ...
- Input value for the N'th operand
For example, consider the following reduction function, which can be used to compute the max and the argmax of a 1-D array in parallel:
f: (Float, Int, Float, Int) -> Float, Int
f(max, argmax, value, index):
if value >= max:
return (value, index)
else:
return (max, argmax)
For 1-D Input arrays V = Float[N], K = Int[N]
, and init values I_V = Float, I_K = Int
, the result f_(N-1)
of reducing across the only input dimension is equivalent to the following recursive application:
f_0 = f(I_V, I_K, V_0, K_0)
f_1 = f(f_0.first, f_0.second, V_1, K_1)
...
f_(N-1) = f(f_(N-2).first, f_(N-2).second, V_(N-1), K_(N-1))
Applying this reduction to an array of values, and an array of sequential indices (ie iota), will co-iterate over the arrays, and return a tuple containing the maximal value and the matching index.
ReducePrecision
See also XlaBuilder::ReducePrecision
.
Models the effect of converting floating-point values to a lower-precision format (such as IEEE-FP16) and back to the original format. The number of exponent and mantissa bits in the lower-precision format can be specified arbitrarily, although all bit sizes may not be supported on all hardware implementations.
ReducePrecision(operand, mantissa_bits, exponent_bits)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | array of floating-point type T . |
exponent_bits | int32 | number of exponent bits in lower-precision format |
mantissa_bits | int32 | number of mantissa bits in lower-precision format |
The result is an array of type T
. The input values are rounded to the nearest value representable with the given number of mantissa bits (using "ties to even" semantics), and any values that exceed the range specified by the number of exponent bits are clamped to positive or negative infinity. NaN
values are retained, although they may be converted to canonical NaN
values.
The lower-precision format must have at least one exponent bit (in order to distinguish a zero value from an infinity, since both have a zero mantissa), and must have a non-negative number of mantissa bits. The number of exponent or mantissa bits may exceed the corresponding value for type T
; the corresponding portion of the conversion is then simply a no-op.
ReduceScatter
See also XlaBuilder::ReduceScatter
.
ReduceScatter is a collective operation that effectively does an AllReduce and then scatters the result by splitting it into shard_count
blocks along the scatter_dimension
and replica i
in the replica group receives the ith
shard.
ReduceScatter(operand, computation, scatter_dim, shard_count, replica_group_ids, channel_id)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | Array or a non-empty tuple of arrays to reduce across replicas. |
computation | XlaComputation | Reduction computation |
scatter_dimension | int64 | Dimension to scatter. |
shard_count | int64 | Number of blocks to split scatter_dimension |
replica_groups | vector of vectors of int64 | Groups between which the reductions are performed |
channel_id | optional int64 | Optional channel ID for cross-module communication |
- When
operand
is a tuple of arrays, the reduce-scatter is performed on each element of the tuple. -
replica_groups
is a list of replica groups between which the reduction is performed (replica id for the current replica can be retrieved usingReplicaId
). The order of replicas in each group determines the order in which the all-reduce result will be scattered.replica_groups
must either be empty (in which case all replicas belong to a single group), or contain the same number of elements as the number of replicas. When there are more than one replica groups, they all must be of the same size. For example,replica_groups = {0, 2}, {1, 3}
performs reduction between the replicas0
and2
, and1
and3
and then scatters the result. -
shard_count
is the size of each replica group. We need this in cases wherereplica_groups
are empty. Ifreplica_groups
is not empty,shard_count
must be equal to the size of each replica group. -
channel_id
is used for cross-module communication: onlyreduce-scatter
operations with the samechannel_id
can communicate with each other.
The output shape is the input shape with the scatter_dimension
made shard_count
times smaller. For example, if there are two replicas and the operand has the value [1.0, 2.25]
and [3.0, 5.25]
respectively on the two replicas, then the output value from this op where scatter_dim
is 0
will be [4.0]
for the first replica and [7.5]
for the second replica.
ReduceWindow
See also XlaBuilder::ReduceWindow
.
Applies a reduction function to all elements in each window of a sequence of N multi-dimensional arrays, producing a single or a tuple of N multi-dimensional arrays as output. Each output array has the same number of elements as the number of valid positions of the window. A pooling layer can be expressed as a ReduceWindow
. Similar to Reduce
, the applied computation
is always passed the init_values
on the left-hand side.
ReduceWindow(operands..., init_values..., computation, window_dimensions, window_strides, padding)
Arguments | Type | Semantics |
---|---|---|
operands | N XlaOps | A sequence of N multi-dimensional arrays of types T_0,..., T_{N-1} , each representing the base area on which the window is placed. |
init_values | N XlaOps | The N starting values for the reduction, one for each of the N operands. See Reduce for details. |
computation | XlaComputation | Reduction function of type T_0, ..., T_{N-1}, T_0, ..., T_{N-1} -> Collate(T_0, ..., T_{N-1}) , to apply to elements in each window of all the input operands. |
window_dimensions | ArraySlice<int64> | array of integers for window dimension values |
window_strides | ArraySlice<int64> | array of integers for window stride values |
base_dilations | ArraySlice<int64> | array of integers for base dilation values |
window_dilations | ArraySlice<int64> | array of integers for window dilation values |
padding | Padding | padding type for window (Padding::kSame, which pads so as to have the same output shape as input if the stride is 1, or Padding::kValid, which uses no padding and "stops" the window once it no longer fits) |
Where:
- N is required to be greater or equal to 1.
- All input arrays must have the same dimensions.
- If
N = 1
,Collate(T)
isT
. - If
N > 1
,Collate(T_0, ..., T_{N-1})
is a tuple ofN
elements of type(T0,...T{N-1})
.
Below code and figure shows an example of using ReduceWindow
. Input is a matrix of size [4x6] and both window_dimensions and window_stride_dimensions are [2x3].
// Create a computation for the reduction (maximum).
XlaComputation max;
{
XlaBuilder builder(client_, "max");
auto y = builder.Parameter(0, ShapeUtil::MakeShape(F32, {}), "y");
auto x = builder.Parameter(1, ShapeUtil::MakeShape(F32, {}), "x");
builder.Max(y, x);
max = builder.Build().value();
}
// Create a ReduceWindow computation with the max reduction computation.
XlaBuilder builder(client_, "reduce_window_2x3");
auto shape = ShapeUtil::MakeShape(F32, {4, 6});
auto input = builder.Parameter(0, shape, "input");
builder.ReduceWindow(
input,
/*init_val=*/builder.ConstantLiteral(LiteralUtil::MinValue(F32)),
*max,
/*window_dimensions=*/{2, 3},
/*window_stride_dimensions=*/{2, 3},
Padding::kValid);

Stride of 1 in a dimension specifies that the position of a window in the dimension is 1 element away from its adjacent window. In order to specify that no windows overlap with each other, window_stride_dimensions should be equal to window_dimensions. The figure below illustrates the use of two different stride values. Padding is applied to each dimension of the input and the calculations are the same as though the input came in with the dimensions it has after padding.

For a non-trivial padding example, consider computing reduce-window minimum (initial value is MAX_FLOAT
) with dimension 3
and stride 2
over the input array [10000, 1000, 100, 10, 1]
. Padding kValid
computes minimums over two valid windows: [10000, 1000, 100]
and [100, 10, 1]
, resulting in the output [100, 1]
. Padding kSame
first pads the array so that the shape after the reduce-window would be the same as input for stride one by adding initial elements on both sides, getting [MAX_VALUE, 10000, 1000, 100, 10, 1, MAX_VALUE]
. Running reduce-window over the padded array operates on three windows [MAX_VALUE, 10000, 1000]
, [1000, 100, 10]
, [10, 1, MAX_VALUE]
, and yields [1000, 10, 1]
.
The evaluation order of the reduction function is arbitrary and may be non-deterministic. Therefore, the reduction function should not be overly sensitive to reassociation. See the discussion about associativity in the context of Reduce
for more details.
ReplicaId
See also XlaBuilder::ReplicaId
.
Returns the unique ID (U32 scalar) of the replica.
ReplicaId()
The unique ID of each replica is an unsigned integer in the interval [0, N)
, where N
is the number of replicas. Since all the replicas are running the same program, a ReplicaId()
call in the program will return a different value on each replica.
Reshape
See also XlaBuilder::Reshape
and the Collapse
operation.
Reshapes the dimensions of an array into a new configuration.
Reshape(operand, new_sizes)
Reshape(operand, dimensions, new_sizes)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | array of type T |
dimensions | int64 vector | order in which dimensions are collapsed |
new_sizes | int64 vector | vector of sizes of new dimensions |
Conceptually, reshape first flattens an array into a one-dimensional vector of data values, and then refines this vector into a new shape. The input arguments are an arbitrary array of type T, a compile-time-constant vector of dimension indices, and a compile-time-constant vector of dimension sizes for the result. The values in the dimension
vector, if given, must be a permutation of all of T's dimensions; the default if not given is {0, ..., rank - 1}
. The order of the dimensions in dimensions
is from slowest-varying dimension (most major) to fastest-varying dimension (most minor) in the loop nest which collapses the input array into a single dimension. The new_sizes
vector determines the size of the output array. The value at index 0 in new_sizes
is the size of dimension 0, the value at index 1 is the size of dimension 1, and so on. The product of the new_size
dimensions must equal the product of the operand's dimension sizes. When refining the collapsed array into the multidimensional array defined by new_sizes
, the dimensions in new_sizes
are ordered from slowest varying (most major) and to fastest varying (most minor).
For example, let v be an array of 24 elements:
let v = f32[4x2x3] { { {10, 11, 12}, {15, 16, 17} },
{ {20, 21, 22}, {25, 26, 27} },
{ {30, 31, 32}, {35, 36, 37} },
{ {40, 41, 42}, {45, 46, 47} } };
In-order collapse:
let v012_24 = Reshape(v, {0,1,2}, {24});
then v012_24 == f32[24] {10, 11, 12, 15, 16, 17, 20, 21, 22, 25, 26, 27,
30, 31, 32, 35, 36, 37, 40, 41, 42, 45, 46, 47};
let v012_83 = Reshape(v, {0,1,2}, {8,3});
then v012_83 == f32[8x3] { {10, 11, 12}, {15, 16, 17},
{20, 21, 22}, {25, 26, 27},
{30, 31, 32}, {35, 36, 37},
{40, 41, 42}, {45, 46, 47} };
Out-of-order collapse:
let v021_24 = Reshape(v, {1,2,0}, {24});
then v012_24 == f32[24] {10, 20, 30, 40, 11, 21, 31, 41, 12, 22, 32, 42,
15, 25, 35, 45, 16, 26, 36, 46, 17, 27, 37, 47};
let v021_83 = Reshape(v, {1,2,0}, {8,3});
then v021_83 == f32[8x3] { {10, 20, 30}, {40, 11, 21},
{31, 41, 12}, {22, 32, 42},
{15, 25, 35}, {45, 16, 26},
{36, 46, 17}, {27, 37, 47} };
let v021_262 = Reshape(v, {1,2,0}, {2,6,2});
then v021_262 == f32[2x6x2] { { {10, 20}, {30, 40},
{11, 21}, {31, 41},
{12, 22}, {32, 42} },
{ {15, 25}, {35, 45},
{16, 26}, {36, 46},
{17, 27}, {37, 47} } };
As a special case, reshape can transform a single-element array to a scalar and vice versa. For example,
Reshape(f32[1x1] { {5} }, {0,1}, {}) == 5;
Reshape(5, {}, {1,1}) == f32[1x1] { {5} };
Rev (reverse)
See also XlaBuilder::Rev
.
Rev(operand, dimensions)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | array of type T |
dimensions | ArraySlice<int64> | dimensions to reverse |
Reverses the order of elements in the operand
array along the specified dimensions
, generating an output array of the same shape. Each element of the operand array at a multidimensional index is stored into the output array at a transformed index. The multidimensional index is transformed by reversing the index in each dimension to be reversed (ie, if a dimension of size N is one of the reversing dimensions, its index i is transformed into N - 1 - i).
One use for the Rev
operation is to reverse the convolution weight array along the two window dimensions during the gradient computation in neural networks.
RngNormal
See also XlaBuilder::RngNormal
.
Constructs an output of a given shape with random numbers generated following the \(N(\mu, \sigma)\) normal distribution. The parameters \(\mu\) and\(\sigma\), and output shape have to have a floating point elemental type. The parameters furthermore have to be scalar valued.
RngNormal(mu, sigma, shape)
Arguments | Type | Semantics |
---|---|---|
mu | XlaOp | Scalar of type T specifying mean of generated numbers |
sigma | XlaOp | Scalar of type T specifying standard deviation of generated numbers |
shape | Shape | Output shape of type T |
RngUniform
See also XlaBuilder::RngUniform
.
Constructs an output of a given shape with random numbers generated following the uniform distribution over the interval \([a,b)\). The parameters and output element type have to be a boolean type, an integral type or a floating point types, and the types have to be consistent. The CPU and GPU backends currently only support F64, F32, F16, BF16, S64, U64, S32 and U32. Furthermore, the parameters need to be scalar valued. If \(b <= a\) the result is implementation-defined.
RngUniform(a, b, shape)
Arguments | Type | Semantics |
---|---|---|
a | XlaOp | Scalar of type T specifying lower limit of interval |
b | XlaOp | Scalar of type T specifying upper limit of interval |
shape | Shape | Output shape of type T |
RngBitGenerator
Generates an output with a given shape filled with uniform random bits using the specified algorithm (or backend default) and returns an updated state (with the same shape as initial state) and the generated random data.
Initial state is the initial state of the current random number generation. It and the required shape and valid values are dependent on the algorithm used.
The output is guaranteed to be a deterministic function of the initial state but it is not guaranteed to be deterministic between backends and different compiler versions.
RngBitGenerator(algorithm, key, shape)
Arguments | Type | Semantics |
---|---|---|
algorithm | RandomAlgorithm | PRNG algorithm to be used. |
initial_state | XlaOp | Initial state for the PRNG algorithm. |
shape | Shape | Output shape for generated data. |
Available values for algorithm
:
rng_default
: Backend specific algorithm with backend specific shape requirements.rng_three_fry
: ThreeFry counter-based PRNG algorithm. Theinitial_state
shape isu64[2]
with arbitrary values. Salmon et al. SC 2011. Parallel random numbers: as easy as 1, 2, 3.rng_philox
: Philox algorithm to generate random numbers in parallel. Theinitial_state
shape isu64[3]
with arbitrary values. Salmon et al. SC 2011. Parallel random numbers: as easy as 1, 2, 3.
Scatter
The XLA scatter operation generates a sequence of results which are the values of the input array operands
, with several slices (at indices specified by scatter_indices
) updated with the sequence of values in updates
using update_computation
.
See also XlaBuilder::Scatter
.
scatter(operands..., scatter_indices, updates..., update_computation, index_vector_dim, update_window_dims, inserted_window_dims, scatter_dims_to_operand_dims)
Arguments | Type | Semantics |
---|---|---|
operands | Sequence of N XlaOp | N arrays of types T_0, ..., T_N to be scattered into. |
scatter_indices | XlaOp | Array containing the starting indices of the slices that must be scattered to. |
updates | Sequence of N XlaOp | N arrays of types T_0, ..., T_N . updates[i] contains the values that must be used for scattering operands[i] . |
update_computation | XlaComputation | Computation to be used for combining the existing values in the input array and the updates during scatter. This computation should be of type T_0, ..., T_N, T_0, ..., T_N -> Collate(T_0, ..., T_N) . |
index_vector_dim | int64 | The dimension in scatter_indices that contains the starting indices. |
update_window_dims | ArraySlice<int64> | The set of dimensions in updates shape that are window dimensions . |
inserted_window_dims | ArraySlice<int64> | The set of window dimensions that must be inserted into updates shape. |
scatter_dims_to_operand_dims | ArraySlice<int64> | A dimensions map from the scatter indices to the operand index space. This array is interpreted as mapping i to scatter_dims_to_operand_dims[i] . It has to be one-to-one and total. |
indices_are_sorted | bool | Whether the indices are guaranteed to be sorted by the caller. |
Where:
- N is required to be greater or equal to 1.
-
operands
[0
], ...,operands
[N-1
] must all have the same dimensions. -
updates
[0
], ...,updates
[N-1
] must all have the same dimensions. - If
N = 1
,Collate(T)
isT
. - If
N > 1
,Collate(T_0, ..., T_N)
is a tuple ofN
elements of typeT
.
If index_vector_dim
is equal to scatter_indices.rank
we implicitly consider scatter_indices
to have a trailing 1
dimension.
We define update_scatter_dims
of type ArraySlice<int64>
as the set of dimensions in updates
shape that are not in update_window_dims
, in ascending order.
The arguments of scatter should follow these constraints:
Each
updates
array must be of rankupdate_window_dims.size + scatter_indices.rank - 1
.Bounds of dimension
i
in eachupdates
array must conform to the following:- If
i
is present inupdate_window_dims
(ie equal toupdate_window_dims
[k
] for somek
), then the bound of dimensioni
inupdates
must not exceed the corresponding bound ofoperand
after accounting for theinserted_window_dims
(ieadjusted_window_bounds
[k
], whereadjusted_window_bounds
contains the bounds ofoperand
with the bounds at indicesinserted_window_dims
removed). - If
i
is present inupdate_scatter_dims
(ie equal toupdate_scatter_dims
[k
] for somek
), then the bound of dimensioni
inupdates
must be equal to the corresponding bound ofscatter_indices
, skippingindex_vector_dim
(iescatter_indices.shape.dims
[k
], ifk
<index_vector_dim
andscatter_indices.shape.dims
[k+1
] otherwise).
- If
update_window_dims
must be in ascending order, not have any repeating dimension numbers, and be in the range[0, updates.rank)
.inserted_window_dims
must be in ascending order, not have any repeating dimension numbers, and be in the range[0, operand.rank)
.operand.rank
must equal the sum ofupdate_window_dims.size
andinserted_window_dims.size
.scatter_dims_to_operand_dims.size
must be equal toscatter_indices.shape.dims
[index_vector_dim
], and its values must be in the range[0, operand.rank)
.
For a given index U
in each updates
array, the corresponding index I
in the corresponding operands
array into which this update has to be applied is computed as follows:
- Let
G
= {U
[k
] fork
inupdate_scatter_dims
}. UseG
to look up an index vectorS
in thescatter_indices
array such thatS
[i
] =scatter_indices
[Combine(G
,i
)] where Combine(A, b) inserts b at positionsindex_vector_dim
into A. - Create an index
S
in
intooperand
usingS
by scatteringS
using thescatter_dims_to_operand_dims
map. More formally:-
S
in
[scatter_dims_to_operand_dims
[k
]] =S
[k
] ifk
<scatter_dims_to_operand_dims.size
. -
S
in
[_
] =0
otherwise.
-
- Create an index
W
in
into eachoperands
array by scattering the indices atupdate_window_dims
inU
according toinserted_window_dims
. More formally:-
W
in
[window_dims_to_operand_dims
(k
)] =U
[k
] ifk
is inupdate_window_dims
, wherewindow_dims_to_operand_dims
is the monotonic function with domain [0
,update_window_dims.size
) and range [0
,operand.rank
) \inserted_window_dims
. (For example, ifupdate_window_dims.size
is4
,operand.rank
is6
, andinserted_window_dims
is {0
,2
} thenwindow_dims_to_operand_dims
is {0
→1
,1
→3
,2
→4
,3
→5
}). -
W
in
[_
] =0
otherwise.
-
-
I
isW
in
+S
in
where + is element-wise addition.
In summary, the scatter operation can be defined as follows.
- Initialize
output
withoperands
, ie for all indicesJ
, for all indicesO
in theoperands
[J
] array:
output
[J
][O
] =operands
[J
][O
] - For every index
U
in theupdates
[J
] array and the corresponding indexO
in theoperand
[J
] array, ifO
is a valid index foroutput
:
(output
[0
][O
], ...,output
[N-1
][O
]) =update_computation
(output
[0
][O
], ..., ,output
[N-1
][O
],updates
[0
][U
], ...,updates
[N-1
][U
])
The order in which updates are applied is non-deterministic. So, when multiple indices in updates
refer to the same index in operands
, the corresponding value in output
will be non-deterministic.
Note that the first parameter that is passed into the update_computation
will always be the current value from the output
array and the second parameter will always be the value from the updates
array. This is important specifically for cases when the update_computation
is not commutative .
If indices_are_sorted
is set to true then XLA can assume that start_indices
are sorted (in ascending start_index_map
order) by the user. If they are not then the semantics is implementation defined.
Informally, the scatter op can be viewed as an inverse of the gather op, ie the scatter op updates the elements in the input that are extracted by the corresponding gather op.
For a detailed informal description and examples, refer to the "Informal Description" section under Gather
.
Select
See also XlaBuilder::Select
.
Constructs an output array from elements of two input arrays, based on the values of a predicate array.
Select(pred, on_true, on_false)
Arguments | Type | Semantics |
---|---|---|
pred | XlaOp | array of type PRED |
on_true | XlaOp | array of type T |
on_false | XlaOp | array of type T |
The arrays on_true
and on_false
must have the same shape. This is also the shape of the output array. The array pred
must have the same dimensionality as on_true
and on_false
, with the PRED
element type.
For each element P
of pred
, the corresponding element of the output array is taken from on_true
if the value of P
is true
, and from on_false
if the value of P
is false
. As a restricted form of broadcasting , pred
can be a scalar of type PRED
. In this case, the output array is taken wholly from on_true
if pred
is true
, and from on_false
if pred
is false
.
Example with non-scalar pred
:
let pred: PRED[4] = {true, false, false, true};
let v1: s32[4] = {1, 2, 3, 4};
let v2: s32[4] = {100, 200, 300, 400};
==>
Select(pred, v1, v2) = s32[4]{1, 200, 300, 4};
Example with scalar pred
:
let pred: PRED = true;
let v1: s32[4] = {1, 2, 3, 4};
let v2: s32[4] = {100, 200, 300, 400};
==>
Select(pred, v1, v2) = s32[4]{1, 2, 3, 4};
Selections between tuples are supported. Tuples are considered to be scalar types for this purpose. If on_true
and on_false
are tuples (which must have the same shape!) then pred
has to be a scalar of type PRED
.
SelectAndScatter
See also XlaBuilder::SelectAndScatter
.
This operation can be considered as a composite operation that first computes ReduceWindow
on the operand
array to select an element from each window, and then scatters the source
array to the indices of the selected elements to construct an output array with the same shape as the operand array. The binary select
function is used to select an element from each window by applying it across each window, and it is called with the property that the first parameter's index vector is lexicographically less than the second parameter's index vector. The select
function returns true
if the first parameter is selected and returns false
if the second parameter is selected, and the function must hold transitivity (ie, if select(a, b)
and select(b, c)
are true
, then select(a, c)
is also true
) so that the selected element does not depend on the order of the elements traversed for a given window.
The function scatter
is applied at each selected index in the output array. It takes two scalar parameters:
- Current value at the selected index in the output array
- The scatter value from
source
that applies to the selected index
It combines the two parameters and returns a scalar value that's used to update the value at the selected index in the output array. Initially, all indices of the output array are set to init_value
.
The output array has the same shape as the operand
array and the source
array must have the same shape as the result of applying a ReduceWindow
operation on the operand
array. SelectAndScatter
can be used to backpropagate the gradient values for a pooling layer in a neural network.
SelectAndScatter(operand, select, window_dimensions, window_strides, padding, source, init_value, scatter)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | array of type T over which the windows slide |
select | XlaComputation | binary computation of type T, T -> PRED , to apply to all elements in each window; returns true if the first parameter is selected and returns false if the second parameter is selected |
window_dimensions | ArraySlice<int64> | array of integers for window dimension values |
window_strides | ArraySlice<int64> | array of integers for window stride values |
padding | Padding | padding type for window (Padding::kSame or Padding::kValid) |
source | XlaOp | array of type T with the values to scatter |
init_value | XlaOp | scalar value of type T for the initial value of the output array |
scatter | XlaComputation | binary computation of type T, T -> T , to apply each scatter source element with its destination element |
The figure below shows examples of using SelectAndScatter
, with the select
function computing the maximal value among its parameters. Note that when the windows overlap, as in the figure (2) below, an index of the operand
array may be selected multiple times by different windows. In the figure, the element of value 9 is selected by both of the top windows (blue and red) and the binary addition scatter
function produces the output element of value 8 (2 + 6).

The evaluation order of the scatter
function is arbitrary and may be non-deterministic. Therefore, the scatter
function should not be overly sensitive to reassociation. See the discussion about associativity in the context of Reduce
for more details.
Send
See also XlaBuilder::Send
.
Send(operand, channel_handle)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | data to send (array of type T) |
channel_handle | ChannelHandle | unique identifier for each send/recv pair |
Sends the given operand data to a Recv
instruction in another computation that shares the same channel handle. Does not return any data.
Similar to the Recv
operation, the client API of Send
operation represents synchronous communication, and is internally decomposed into 2 HLO instructions ( Send
and SendDone
) to enable asynchronous data transfers. See also HloInstruction::CreateSend
and HloInstruction::CreateSendDone
.
Send(HloInstruction operand, int64 channel_id)
Initiates an asynchronous transfer of the operand to the resources allocated by the Recv
instruction with the same channel id. Returns a context, which is used by a following SendDone
instruction to wait for the completion of the data transfer. The context is a tuple of {operand (shape), request identifier (U32)} and it can only be used by a SendDone
instruction.
SendDone(HloInstruction context)
Given a context created by a Send
instruction, waits for the data transfer to complete. The instruction does not return any data.
Scheduling of channel instructions
The execution order of the 4 instructions for each channel ( Recv
, RecvDone
, Send
, SendDone
) is as below.

-
Recv
happens beforeSend
-
Send
happens beforeRecvDone
-
Recv
happens beforeRecvDone
-
Send
happens beforeSendDone
When the backend compilers generate a linear schedule for each computation that communicates via channel instructions, there must not be cycles across the computations. For example, below schedules lead to deadlocks.

Slice
See also XlaBuilder::Slice
.
Slicing extracts a sub-array from the input array. The sub-array is of the same rank as the input and contains the values inside a bounding box within the input array where the dimensions and indices of the bounding box are given as arguments to the slice operation.
Slice(operand, start_indices, limit_indices, strides)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | N dimensional array of type T |
start_indices | ArraySlice<int64> | List of N integers containing the starting indices of the slice for each dimension. Values must be greater than or equal to zero. |
limit_indices | ArraySlice<int64> | List of N integers containing the ending indices (exclusive) for the slice for each dimension. Each value must be greater than or equal to the respective start_indices value for the dimension and less than or equal to the size of the dimension. |
strides | ArraySlice<int64> | List of N integers that decides the input stride of the slice. The slice picks every strides[d] element in dimension d . |
1-dimensional example:
let a = {0.0, 1.0, 2.0, 3.0, 4.0}
Slice(a, {2}, {4}) produces:
{2.0, 3.0}
2-dimensional example:
let b =
{ {0.0, 1.0, 2.0},
{3.0, 4.0, 5.0},
{6.0, 7.0, 8.0},
{9.0, 10.0, 11.0} }
Slice(b, {2, 1}, {4, 3}) produces:
{ { 7.0, 8.0},
{10.0, 11.0} }
Sort
See also XlaBuilder::Sort
.
Sort(operands, comparator, dimension, is_stable)
Arguments | Type | Semantics |
---|---|---|
operands | ArraySlice<XlaOp> | The operands to sort. |
comparator | XlaComputation | The comparator computation to use. |
dimension | int64 | The dimension along which to sort. |
is_stable | bool | Whether stable sorting should be used. |
If only one operand is provided:
If the operand is a rank-1 tensor (an array), the result is a sorted array. If you want to sort the array into ascending order, the comparator should perform a less-than comparison. Formally, after the array is sorted, it holds for all index positions
i, j
withi < j
that eithercomparator(value[i], value[j]) = comparator(value[j], value[i]) = false
orcomparator(value[i], value[j]) = true
.If the operand has higher rank, the operand is sorted along the provided dimension. For example, for a rank-2 tensor (a matrix), a dimension value of
0
will independently sort every column, and a dimension value of1
will independently sort each row. If no dimension number is provided, then the last dimension is chosen by default. For the dimension which is sorted, the same sorting order applies as in the rank-1 case.
If n > 1
operands are provided:
All
n
operands must be tensors with the same dimensions. The element types of the tensors may be different.All operands are sorted together, not individually. Conceptually the operands are treated as a tuple. When checking whether the elements of each operand at index positions
i
andj
need to be swapped, the comparator is called with2 * n
scalar parameters, where parameter2 * k
corresponds to the value at positioni
from thek-th
operand, and parameter2 * k + 1
corresponds to the value at positionj
from thek-th
operand. Usually, the comparator would thus compare parameters2 * k
and2 * k + 1
with each other and possibly use other parameter pairs as tie breakers.The result is a tuple that consists of the operands in sorted order (along the provided dimension, as above). The
i-th
operand of the tuple corresponds to thei-th
operand of Sort.
For example, if there are three operands operand0 = [3, 1]
, operand1 = [42, 50]
, operand2 = [-3.0, 1.1]
, and the comparator compares only the values of operand0
with less-than, then the output of the sort is the tuple ([1, 3], [50, 42], [1.1, -3.0])
.
If is_stable
is set to true, the sort is guaranteed to be stable, that is, if there are elements which are considered to be equal by the comparator, the relative order of the equal values is preserved. Two elements e1
and e2
are equal if and only if comparator(e1, e2) = comparator(e2, e1) = false
. By default, is_stable
is set to false.
Transpose
See also the tf.reshape
operation.
Transpose(operand)
Arguments | Type | Semantics |
---|---|---|
operand | XlaOp | The operand to transpose. |
permutation | ArraySlice<int64> | How to permute the dimensions. |
Permutes the operand dimensions with the given permutation, so ∀ i . 0 ≤ i < rank ⇒ input_dimensions[permutation[i]] = output_dimensions[i]
.
This is the same as Reshape(operand, permutation, Permute(permutation, operand.shape.dimensions)).
TriangularSolve
See also XlaBuilder::TriangularSolve
.
Solves systems of linear equations with lower or upper triangular coefficient matrices by forward- or back-substitution. Broadcasting along leading dimensions, this routine solves one of the matrix systems op(a) * x = b
, or x * op(a) = b
, for the variable x
, given a
and b
, where op(a)
is either op(a) = a
, or op(a) = Transpose(a)
, or op(a) = Conj(Transpose(a))
.
TriangularSolve(a, b, left_side, lower, unit_diagonal, transpose_a)
Arguments | Type | Semantics |
---|---|---|
a | XlaOp | a rank > 2 array of a complex or floating-point type with shape [..., M, M] . |
b | XlaOp | a rank > 2 array of the same type with shape [..., M, K] if left_side is true, [..., K, M] otherwise. |
left_side | bool | indicates whether to solve a system of the form op(a) * x = b ( true ) or x * op(a) = b ( false ). |
lower | bool | whether to use the upper or lower triangle of a . |
unit_diagonal | bool | if true , the diagonal elements of a are assumed to be 1 and not accessed. |
transpose_a | Transpose | whether to use a as is, transpose it or take its conjugate transpose. |
Input data is read only from the lower/upper triangle of a
, depending on the value of lower
. Values from the other triangle are ignored. Output data is returned in the same triangle; the values in the other triangle are implementation-defined and may be anything.
If the rank of a
and b
are greater than 2, they are treated as batches of matrices, where all except the minor 2 dimensions are batch dimensions. a
and b
must have equal batch dimensions.
Tuple
See also XlaBuilder::Tuple
.
A tuple containing a variable number of data handles, each of which has its own shape.
This is analogous to std::tuple
in C++. Conceptually:
let v: f32[10] = f32[10]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
let s: s32 = 5;
let t: (f32[10], s32) = tuple(v, s);
Tuples can be deconstructed (accessed) via the GetTupleElement
operation.
While
See also XlaBuilder::While
.
While(condition, body, init)
Arguments | Type | Semantics |
---|---|---|
condition | XlaComputation | XlaComputation of type T -> PRED which defines the termination condition of the loop. |
body | XlaComputation | XlaComputation of type T -> T which defines the body of the loop. |
init | T | Initial value for the parameter of condition and body . |
Sequentially executes the body
until the condition
fails. This is similar to a typical while loop in many other languages except for the differences and restrictions listed below.
- A
While
node returns a value of typeT
, which is the result from the last execution of thebody
. - The shape of the type
T
is statically determined and must be the same across all iterations.
The T parameters of the computations are initialized with the init
value in the first iteration and are automatically updated to the new result from body
in each subsequent iteration.
One main use case of the While
node is to implement the repeated execution of training in neural networks. Simplified pseudocode is shown below with a graph that represents the computation. The code can be found in while_test.cc
. The type T
in this example is a Tuple
consisting of an int32
for the iteration count and a vector[10]
for the accumulator. For 1000 iterations, the loop keeps adding a constant vector to the accumulator.
// Pseudocode for the computation.
init = {0, zero_vector[10]} // Tuple of int32 and float[10].
result = init;
while (result(0) < 1000) {
iteration = result(0) + 1;
new_vector = result(1) + constant_vector[10];
result = {iteration, new_vector};
}
