![]() | ![]() | ![]() |
इस ट्यूटोरियल गाड़ियों एक TensorFlow मॉडल को वर्गीकृत करने के CIFAR -10 डाटासेट, और हम XLA का उपयोग कर इसे संकलित करें।
केरस एपीआई का उपयोग करके डेटासेट को लोड और सामान्य करें:
import tensorflow as tf
# Check that GPU is available: cf. https://colab.research.google.com/notebooks/gpu.ipynb
assert(tf.test.gpu_device_name())
tf.keras.backend.clear_session()
tf.config.optimizer.set_jit(False) # Start with XLA disabled.
def load_data():
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
x_train = x_train.astype('float32') / 256
x_test = x_test.astype('float32') / 256
# Convert class vectors to binary class matrices.
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)
return ((x_train, y_train), (x_test, y_test))
(x_train, y_train), (x_test, y_test) = load_data()
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz 170500096/170498071 [==============================] - 12s 0us/step 170508288/170498071 [==============================] - 12s 0us/step
हम मॉडल, Keras से अनुकूलित परिभाषित CIFAR-10 उदाहरण :
def generate_model():
return tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:]),
tf.keras.layers.Activation('relu'),
tf.keras.layers.Conv2D(32, (3, 3)),
tf.keras.layers.Activation('relu'),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Conv2D(64, (3, 3), padding='same'),
tf.keras.layers.Activation('relu'),
tf.keras.layers.Conv2D(64, (3, 3)),
tf.keras.layers.Activation('relu'),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512),
tf.keras.layers.Activation('relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10),
tf.keras.layers.Activation('softmax')
])
model = generate_model()
हम मॉडल का उपयोग कर प्रशिक्षित RMSprop अनुकूलक:
def compile_model(model):
opt = tf.keras.optimizers.RMSprop(lr=0.0001, decay=1e-6)
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
return model
model = compile_model(model)
def train_model(model, x_train, y_train, x_test, y_test, epochs=25):
model.fit(x_train, y_train, batch_size=256, epochs=epochs, validation_data=(x_test, y_test), shuffle=True)
def warmup(model, x_train, y_train, x_test, y_test):
# Warm up the JIT, we do not wish to measure the compilation time.
initial_weights = model.get_weights()
train_model(model, x_train, y_train, x_test, y_test, epochs=1)
model.set_weights(initial_weights)
warmup(model, x_train, y_train, x_test, y_test)
%time train_model(model, x_train, y_train, x_test, y_test)
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py:356: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead. "The `lr` argument is deprecated, use `learning_rate` instead.") 196/196 [==============================] - 12s 11ms/step - loss: 2.0710 - accuracy: 0.2378 - val_loss: 1.8439 - val_accuracy: 0.3554 Epoch 1/25 196/196 [==============================] - 2s 10ms/step - loss: 2.1360 - accuracy: 0.2055 - val_loss: 1.9299 - val_accuracy: 0.3314 Epoch 2/25 196/196 [==============================] - 2s 8ms/step - loss: 1.8248 - accuracy: 0.3405 - val_loss: 1.6969 - val_accuracy: 0.3973 Epoch 3/25 196/196 [==============================] - 2s 8ms/step - loss: 1.6864 - accuracy: 0.3944 - val_loss: 1.5874 - val_accuracy: 0.4326 Epoch 4/25 196/196 [==============================] - 2s 8ms/step - loss: 1.5985 - accuracy: 0.4238 - val_loss: 1.5332 - val_accuracy: 0.4401 Epoch 5/25 196/196 [==============================] - 2s 8ms/step - loss: 1.5332 - accuracy: 0.4453 - val_loss: 1.5122 - val_accuracy: 0.4598 Epoch 6/25 196/196 [==============================] - 2s 8ms/step - loss: 1.4860 - accuracy: 0.4627 - val_loss: 1.4261 - val_accuracy: 0.4880 Epoch 7/25 196/196 [==============================] - 2s 8ms/step - loss: 1.4434 - accuracy: 0.4790 - val_loss: 1.3658 - val_accuracy: 0.5058 Epoch 8/25 196/196 [==============================] - 2s 8ms/step - loss: 1.4049 - accuracy: 0.4976 - val_loss: 1.3883 - val_accuracy: 0.5022 Epoch 9/25 196/196 [==============================] - 2s 8ms/step - loss: 1.3727 - accuracy: 0.5110 - val_loss: 1.3145 - val_accuracy: 0.5329 Epoch 10/25 196/196 [==============================] - 2s 8ms/step - loss: 1.3462 - accuracy: 0.5208 - val_loss: 1.2622 - val_accuracy: 0.5503 Epoch 11/25 196/196 [==============================] - 2s 8ms/step - loss: 1.3132 - accuracy: 0.5323 - val_loss: 1.2740 - val_accuracy: 0.5528 Epoch 12/25 196/196 [==============================] - 2s 8ms/step - loss: 1.2875 - accuracy: 0.5431 - val_loss: 1.2296 - val_accuracy: 0.5677 Epoch 13/25 196/196 [==============================] - 2s 8ms/step - loss: 1.2601 - accuracy: 0.5525 - val_loss: 1.3068 - val_accuracy: 0.5353 Epoch 14/25 196/196 [==============================] - 2s 8ms/step - loss: 1.2376 - accuracy: 0.5606 - val_loss: 1.1662 - val_accuracy: 0.5904 Epoch 15/25 196/196 [==============================] - 2s 8ms/step - loss: 1.2112 - accuracy: 0.5708 - val_loss: 1.1504 - val_accuracy: 0.5939 Epoch 16/25 196/196 [==============================] - 2s 8ms/step - loss: 1.1923 - accuracy: 0.5789 - val_loss: 1.1133 - val_accuracy: 0.6125 Epoch 17/25 196/196 [==============================] - 2s 8ms/step - loss: 1.1693 - accuracy: 0.5886 - val_loss: 1.1189 - val_accuracy: 0.6088 Epoch 18/25 196/196 [==============================] - 2s 8ms/step - loss: 1.1498 - accuracy: 0.5938 - val_loss: 1.1080 - val_accuracy: 0.6142 Epoch 19/25 196/196 [==============================] - 2s 8ms/step - loss: 1.1291 - accuracy: 0.6031 - val_loss: 1.0749 - val_accuracy: 0.6290 Epoch 20/25 196/196 [==============================] - 2s 8ms/step - loss: 1.1097 - accuracy: 0.6111 - val_loss: 1.0363 - val_accuracy: 0.6447 Epoch 21/25 196/196 [==============================] - 2s 8ms/step - loss: 1.0928 - accuracy: 0.6161 - val_loss: 1.0340 - val_accuracy: 0.6387 Epoch 22/25 196/196 [==============================] - 2s 8ms/step - loss: 1.0738 - accuracy: 0.6238 - val_loss: 1.0650 - val_accuracy: 0.6244 Epoch 23/25 196/196 [==============================] - 2s 8ms/step - loss: 1.0571 - accuracy: 0.6286 - val_loss: 0.9993 - val_accuracy: 0.6535 Epoch 24/25 196/196 [==============================] - 2s 8ms/step - loss: 1.0470 - accuracy: 0.6325 - val_loss: 0.9925 - val_accuracy: 0.6511 Epoch 25/25 196/196 [==============================] - 2s 8ms/step - loss: 1.0274 - accuracy: 0.6405 - val_loss: 1.0276 - val_accuracy: 0.6387 CPU times: user 49.6 s, sys: 7.41 s, total: 57.1 s Wall time: 40.9 s 313/313 [==============================] - 1s 2ms/step - loss: 1.0276 - accuracy: 0.6387 Test loss: 1.0276497602462769 Test accuracy: 0.638700008392334
अब XLA कंपाइलर का उपयोग करके मॉडल को फिर से प्रशिक्षित करते हैं। एप्लिकेशन के बीच में कंपाइलर को सक्षम करने के लिए, हमें केरस सत्र को रीसेट करना होगा।
# We need to clear the session to enable JIT in the middle of the program.
tf.keras.backend.clear_session()
tf.config.optimizer.set_jit(True) # Enable XLA.
model = compile_model(generate_model())
(x_train, y_train), (x_test, y_test) = load_data()
warmup(model, x_train, y_train, x_test, y_test)
%time train_model(model, x_train, y_train, x_test, y_test)
196/196 [==============================] - 6s 14ms/step - loss: 2.0028 - accuracy: 0.2637 - val_loss: 1.7774 - val_accuracy: 0.3784 Epoch 1/25 196/196 [==============================] - 4s 19ms/step - loss: 2.1142 - accuracy: 0.2136 - val_loss: 1.8591 - val_accuracy: 0.3303 Epoch 2/25 196/196 [==============================] - 2s 8ms/step - loss: 1.7614 - accuracy: 0.3622 - val_loss: 1.6321 - val_accuracy: 0.4149 Epoch 3/25 196/196 [==============================] - 2s 8ms/step - loss: 1.6471 - accuracy: 0.3991 - val_loss: 1.5480 - val_accuracy: 0.4379 Epoch 4/25 196/196 [==============================] - 2s 8ms/step - loss: 1.5706 - accuracy: 0.4303 - val_loss: 1.4671 - val_accuracy: 0.4691 Epoch 5/25 196/196 [==============================] - 2s 8ms/step - loss: 1.5098 - accuracy: 0.4514 - val_loss: 1.4270 - val_accuracy: 0.4858 Epoch 6/25 196/196 [==============================] - 2s 8ms/step - loss: 1.4561 - accuracy: 0.4734 - val_loss: 1.4270 - val_accuracy: 0.4919 Epoch 7/25 196/196 [==============================] - 2s 8ms/step - loss: 1.4199 - accuracy: 0.4906 - val_loss: 1.3290 - val_accuracy: 0.5272 Epoch 8/25 196/196 [==============================] - 2s 8ms/step - loss: 1.3831 - accuracy: 0.5049 - val_loss: 1.3550 - val_accuracy: 0.5205 Epoch 9/25 196/196 [==============================] - 2s 8ms/step - loss: 1.3487 - accuracy: 0.5176 - val_loss: 1.3339 - val_accuracy: 0.5240 Epoch 10/25 196/196 [==============================] - 2s 8ms/step - loss: 1.3190 - accuracy: 0.5275 - val_loss: 1.2579 - val_accuracy: 0.5528 Epoch 11/25 196/196 [==============================] - 2s 8ms/step - loss: 1.2930 - accuracy: 0.5415 - val_loss: 1.2364 - val_accuracy: 0.5654 Epoch 12/25 196/196 [==============================] - 2s 8ms/step - loss: 1.2656 - accuracy: 0.5499 - val_loss: 1.2646 - val_accuracy: 0.5561 Epoch 13/25 196/196 [==============================] - 2s 8ms/step - loss: 1.2416 - accuracy: 0.5614 - val_loss: 1.2615 - val_accuracy: 0.5540 Epoch 14/25 196/196 [==============================] - 2s 8ms/step - loss: 1.2196 - accuracy: 0.5681 - val_loss: 1.1970 - val_accuracy: 0.5797 Epoch 15/25 196/196 [==============================] - 2s 8ms/step - loss: 1.1996 - accuracy: 0.5751 - val_loss: 1.1142 - val_accuracy: 0.6099 Epoch 16/25 196/196 [==============================] - 2s 8ms/step - loss: 1.1777 - accuracy: 0.5849 - val_loss: 1.2225 - val_accuracy: 0.5653 Epoch 17/25 196/196 [==============================] - 2s 8ms/step - loss: 1.1542 - accuracy: 0.5912 - val_loss: 1.0860 - val_accuracy: 0.6187 Epoch 18/25 196/196 [==============================] - 2s 8ms/step - loss: 1.1358 - accuracy: 0.6009 - val_loss: 1.0767 - val_accuracy: 0.6180 Epoch 19/25 196/196 [==============================] - 2s 8ms/step - loss: 1.1197 - accuracy: 0.6062 - val_loss: 1.0517 - val_accuracy: 0.6318 Epoch 20/25 196/196 [==============================] - 2s 8ms/step - loss: 1.0980 - accuracy: 0.6139 - val_loss: 1.0362 - val_accuracy: 0.6390 Epoch 21/25 196/196 [==============================] - 2s 8ms/step - loss: 1.0738 - accuracy: 0.6233 - val_loss: 1.0777 - val_accuracy: 0.6256 Epoch 22/25 196/196 [==============================] - 2s 8ms/step - loss: 1.0555 - accuracy: 0.6285 - val_loss: 1.0615 - val_accuracy: 0.6353 Epoch 23/25 196/196 [==============================] - 2s 8ms/step - loss: 1.0434 - accuracy: 0.6331 - val_loss: 1.0025 - val_accuracy: 0.6498 Epoch 24/25 196/196 [==============================] - 2s 8ms/step - loss: 1.0285 - accuracy: 0.6386 - val_loss: 0.9670 - val_accuracy: 0.6614 Epoch 25/25 196/196 [==============================] - 2s 8ms/step - loss: 1.0116 - accuracy: 0.6443 - val_loss: 0.9806 - val_accuracy: 0.6576 CPU times: user 43.8 s, sys: 6.15 s, total: 49.9 s Wall time: 42.6 s
Titan V GPU और Intel Xeon E5-2690 CPU वाली मशीन पर स्पीड अप ~ 1.17x है।