Baru dalam pembelajaran mesin? Tonton video kursus untuk mendapatkan pengetahuan praktis tentang ML menggunakan teknologi web
View series
Apa itu pembelajaran transfer?
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Model pembelajaran mendalam yang canggih memiliki jutaan parameter (bobot), dan melatihnya dari awal seringkali membutuhkan data dan sumber daya komputasi dalam jumlah besar. Pembelajaran transfer adalah teknik yang mempersingkat sebagian besar dari ini dengan mengambil bagian dari model yang telah dilatih pada tugas terkait dan menggunakannya kembali dalam model baru.
Misalnya, tutorial berikutnya di bagian ini akan menunjukkan cara membuat pengenal gambar Anda sendiri yang memanfaatkan model yang sudah dilatih untuk mengenali 1000 jenis objek berbeda di dalam gambar. Anda dapat mengadaptasi pengetahuan yang ada dalam model terlatih untuk mendeteksi kelas gambar Anda sendiri menggunakan data pelatihan yang jauh lebih sedikit daripada yang diperlukan model asli.
Ini berguna untuk mengembangkan model baru dengan cepat serta menyesuaikan model di lingkungan dengan sumber daya terbatas seperti browser dan perangkat seluler.
Paling sering saat melakukan pembelajaran transfer, kami tidak menyesuaikan bobot model aslinya. Alih-alih, kami menghapus lapisan terakhir dan melatih model baru (sering kali cukup dangkal) di atas keluaran model terpotong. Ini adalah teknik yang akan Anda lihat didemonstrasikan dalam tutorial di bagian ini:
Untuk contoh tambahan pembelajaran transfer menggunakan TensorFlow.js, lihat Menggunakan model terlatih .
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2023-05-26 UTC.
[{
"type": "thumb-down",
"id": "missingTheInformationINeed",
"label":"Informasi yang saya butuhkan tidak ada"
},{
"type": "thumb-down",
"id": "tooComplicatedTooManySteps",
"label":"Terlalu rumit/langkahnya terlalu banyak"
},{
"type": "thumb-down",
"id": "outOfDate",
"label":"Sudah usang"
},{
"type": "thumb-down",
"id": "translationIssue",
"label":"Masalah terjemahan"
},{
"type": "thumb-down",
"id": "samplesCodeIssue",
"label":"Masalah kode / contoh"
},{
"type": "thumb-down",
"id": "otherDown",
"label":"Lainnya"
}]
[{
"type": "thumb-up",
"id": "easyToUnderstand",
"label":"Mudah dipahami"
},{
"type": "thumb-up",
"id": "solvedMyProblem",
"label":"Memecahkan masalah saya"
},{
"type": "thumb-up",
"id": "otherUp",
"label":"Lainnya"
}]
{"lastModified": "Terakhir diperbarui pada 2023-05-26 UTC."}
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Informasi yang saya butuhkan tidak ada","missingTheInformationINeed","thumb-down"],["Terlalu rumit/langkahnya terlalu banyak","tooComplicatedTooManySteps","thumb-down"],["Sudah usang","outOfDate","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Masalah kode / contoh","samplesCodeIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2023-05-26 UTC."],[],[]]