iOS पर TensorFlow Lite के साथ आरंभ करने के लिए, हम निम्नलिखित उदाहरण की खोज करने की सलाह देते हैं:
स्रोत कोड की व्याख्या के लिए, आपको TensorFlow Lite iOS छवि वर्गीकरण भी पढ़ना चाहिए।
यह उदाहरण ऐप डिवाइस के रियर-फेसिंग कैमरे से जो कुछ भी देखता है उसे लगातार वर्गीकृत करने के लिए छवि वर्गीकरण का उपयोग करता है, जो सबसे अधिक संभावित वर्गीकरण प्रदर्शित करता है। यह उपयोगकर्ता को फ़्लोटिंग पॉइंट या क्वांटाइज़्ड मॉडल के बीच चयन करने की अनुमति देता है और अनुमान लगाने के लिए थ्रेड्स की संख्या का चयन करता है।
TensorFlow Lite को अपने Swift या Objective-C प्रोजेक्ट में जोड़ें
TensorFlow Lite, Swift और Objective-C में लिखी गई मूल iOS लाइब्रेरी पेश करता है। प्रारंभिक बिंदु के रूप में स्विफ्ट छवि वर्गीकरण उदाहरण का उपयोग करके अपना स्वयं का iOS कोड लिखना प्रारंभ करें।
नीचे दिए गए सेक्शन में बताया गया है कि अपने प्रोजेक्ट में TensorFlow Lite Swift या Objective-C कैसे जोड़ें:
कोकोपोड्स डेवलपर्स
अपने Podfile
में, TensorFlow Lite पॉड जोड़ें। फिर, pod install
चलाएं।
तीव्र
use_frameworks!
pod 'TensorFlowLiteSwift'
उद्देश्य सी
pod 'TensorFlowLiteObjC'
संस्करण निर्दिष्ट करना
TensorFlowLiteSwift
और TensorFlowLiteObjC
पॉड दोनों के लिए स्थिर रिलीज़ और रात्रिकालीन रिलीज़ उपलब्ध हैं। यदि आप ऊपर दिए गए उदाहरणों की तरह किसी वर्शन प्रतिबंध को निर्दिष्ट नहीं करते हैं, तो CocoaPods डिफ़ॉल्ट रूप से नवीनतम स्थिर रिलीज़ को खींच लेगा।
आप एक संस्करण बाधा भी निर्दिष्ट कर सकते हैं। उदाहरण के लिए, यदि आप संस्करण 2.10.0 पर निर्भर रहना चाहते हैं, तो आप निर्भरता को इस प्रकार लिख सकते हैं:
pod 'TensorFlowLiteSwift', '~> 2.10.0'
यह सुनिश्चित करेगा कि आपके ऐप में TensorFlowLiteSwift
पॉड के नवीनतम उपलब्ध 2.xy संस्करण का उपयोग किया जाए। वैकल्पिक रूप से, यदि आप रात के निर्माण पर निर्भर रहना चाहते हैं, तो आप लिख सकते हैं:
pod 'TensorFlowLiteSwift', '~> 0.0.1-nightly'
2.4.0 संस्करण और नवीनतम रात्रिकालीन रिलीज़ से, डिफ़ॉल्ट रूप से जीपीयू और कोर एमएल प्रतिनिधियों को बाइनरी आकार को कम करने के लिए पॉड से बाहर रखा गया है। आप उप-विशिष्ट निर्दिष्ट करके उन्हें शामिल कर सकते हैं:
pod 'TensorFlowLiteSwift', '~> 0.0.1-nightly', :subspecs => ['CoreML', 'Metal']
यह आपको TensorFlow Lite में जोड़ी गई नवीनतम सुविधाओं का उपयोग करने की अनुमति देगा। ध्यान दें कि जब आप पहली बार pod install
कमांड चलाते हैं तो Podfile.lock
फ़ाइल बन जाने के बाद, रात्रिकालीन लाइब्रेरी संस्करण को वर्तमान तिथि के संस्करण में लॉक कर दिया जाएगा। यदि आप रात की लाइब्रेरी को नए में अपडेट करना चाहते हैं, तो आपको pod update
कमांड चलाना चाहिए।
संस्करण बाधाओं को निर्दिष्ट करने के विभिन्न तरीकों के बारे में अधिक जानकारी के लिए, पॉड संस्करण निर्दिष्ट करना देखें।
बेज़ेल डेवलपर्स
अपनी BUILD
फ़ाइल में, TensorFlowLite
निर्भरता को अपने लक्ष्य में जोड़ें।
तीव्र
swift_library(
deps = [
"//tensorflow/lite/swift:TensorFlowLite",
],
)
उद्देश्य सी
objc_library(
deps = [
"//tensorflow/lite/objc:TensorFlowLite",
],
)
सी/सी ++ एपीआई
वैकल्पिक रूप से, आप सी एपीआई या सी ++ एपीआई का उपयोग कर सकते हैं
# Using C API directly
objc_library(
deps = [
"//tensorflow/lite/c:c_api",
],
)
# Using C++ API directly
objc_library(
deps = [
"//tensorflow/lite:framework",
],
)
पुस्तकालय आयात करें
स्विफ्ट फ़ाइलों के लिए, TensorFlow Lite मॉड्यूल आयात करें:
import TensorFlowLite
ऑब्जेक्टिव-सी फाइलों के लिए, छाता हेडर आयात करें:
#import "TFLTensorFlowLite.h"
या, यदि आप अपने Xcode प्रोजेक्ट में CLANG_ENABLE_MODULES = YES
सेट करते हैं तो मॉड्यूल:
@import TFLTensorFlowLite;