Assistez au symposium Women in ML le 7 décembre Inscrivez-vous maintenant
Restez organisé à l'aide des collections Enregistrez et classez les contenus selon vos préférences.

TensorFlow Lite utilise des modèles TensorFlow convertis en un format de modèle d'apprentissage automatique (ML) plus petit et plus efficace. Vous pouvez utiliser des modèles pré-entraînés avec TensorFlow Lite, modifier des modèles existants ou créer vos propres modèles TensorFlow, puis les convertir au format TensorFlow Lite. Les modèles TensorFlow Lite peuvent effectuer presque toutes les tâches qu'un modèle TensorFlow standard peut effectuer : détection d'objets, traitement du langage naturel, reconnaissance de formes, etc., à l'aide d'un large éventail de données d'entrée, notamment des images, de la vidéo, de l'audio et du texte.

Passez à la section Convertir pour plus d'informations sur l'exécution de votre modèle avec TensorFlow Lite.
Pour obtenir des conseils sur l'obtention de modèles pour votre cas d'utilisation, continuez à lire .

Vous n'avez pas besoin de créer un modèle TensorFlow Lite pour commencer à utiliser le machine learning sur des appareils mobiles ou périphériques. De nombreux modèles déjà construits et optimisés sont disponibles pour que vous puissiez les utiliser immédiatement dans votre application. Vous pouvez commencer par utiliser des modèles pré-entraînés dans TensorFlow Lite et passer à la création de modèles personnalisés au fil du temps, comme suit :

  1. Commencez à développer des fonctionnalités d'apprentissage automatique avec des modèles déjà formés.
  2. Modifiez les modèles TensorFlow Lite existants à l'aide d'outils tels que Model Maker .
  3. Créez un modèle personnalisé avec les outils TensorFlow, puis convertissez -le en TensorFlow Lite.

Si vous essayez d'implémenter rapidement des fonctionnalités ou des tâches utilitaires avec l'apprentissage automatique, vous devez examiner les cas d'utilisation pris en charge par ML Kit avant de commencer le développement avec TensorFlow Lite. Cet outil de développement fournit des API que vous pouvez appeler directement à partir d'applications mobiles pour effectuer des tâches ML courantes telles que la lecture de codes-barres et la traduction sur l'appareil. L'utilisation de cette méthode peut vous aider à obtenir des résultats rapidement. Cependant, ML Kit a des options limitées pour étendre ses capacités. Pour plus d'informations, consultez la documentation du développeur ML Kit .


Si la création d'un modèle personnalisé pour votre cas d'utilisation spécifique est votre objectif ultime, vous devez commencer par développer et former un modèle TensorFlow ou étendre un modèle existant. Avant de commencer le processus de développement de votre modèle, vous devez connaître les contraintes des modèles TensorFlow Lite et créer votre modèle en gardant ces contraintes à l'esprit :

  • Capacités de calcul limitées
  • Taille des modèles
  • Taille des données
  • Opérations TensorFlow prises en charge

Pour plus de détails sur chacune de ces contraintes, voir Contraintes de conception de modèle dans la vue d'ensemble de la construction de modèle. Pour plus d'informations sur la création de modèles efficaces, compatibles et hautes performances pour TensorFlow Lite, consultez Bonnes pratiques en matière de performances .

Découvrez comment choisir un modèle de ML pré-entraîné à utiliser avec TensorFlow Lite.
Utilisez TensorFlow Lite Model Maker pour modifier des modèles à l'aide de vos données d'entraînement.
Découvrez comment créer des modèles TensorFlow personnalisés à utiliser avec TensorFlow Lite.