TFX — это комплексная платформа для развертывания рабочих конвейеров машинного обучения.

Когда вы будете готовы перевести свои модели из исследовательской в ​​производственную, используйте TFX для создания производственного конвейера и управления им.

Запустить Колаб

В этом интерактивном руководстве рассматриваются все встроенные компоненты TFX.

См. учебные пособия

Учебники покажут вам, как использовать TFX, на полных сквозных примерах.

См. руководство

Руководства объясняют концепции и компоненты TFX.

Как это работает

Конвейер TFX — это последовательность компонентов, реализующих конвейер машинного обучения, специально разработанный для масштабируемых высокопроизводительных задач машинного обучения. Компоненты создаются с использованием библиотек TFX, которые также можно использовать по отдельности.

Решения распространенных проблем

Изучите пошаговые руководства, которые помогут вам в ваших проектах.

Средний
Обучайте и обслуживайте модель TensorFlow с помощью TensorFlow Serving

Это руководство обучает модель нейронной сети классифицировать изображения одежды, например кроссовок и рубашек, сохраняет обученную модель, а затем обслуживает ее с помощью TensorFlow Serving. Основное внимание уделяется обслуживанию TensorFlow, а не моделированию и обучению в TensorFlow.

Средний
Создание конвейеров TFX, размещенных в Google Cloud

Введение в конвейеры TFX и Cloud AI Platform для создания собственных конвейеров машинного обучения в Google Cloud. Следуйте типичному процессу разработки машинного обучения, начиная с изучения набора данных и заканчивая полным рабочим конвейером.

Средний
Используйте TFX с TensorFlow Lite для логического вывода на устройстве

Узнайте, как TFX может создавать и оценивать модели машинного обучения, которые будут развернуты на устройстве. TFX теперь обеспечивает встроенную поддержку TFLite, что позволяет выполнять высокоэффективный логический вывод на мобильных устройствах.

Новости и объявления

Посетите наш блог и плейлист YouTube для получения дополнительного контента TFX,
и подпишитесь на нашу рассылку TensorFlow, чтобы получать
последние объявления, отправленные прямо на ваш почтовый ящик.