텐서플로우:: 작전:: 브로드캐스트동적 형태
bookmark_borderbookmark
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
#include <array_ops.h>
브로드캐스트를 사용하여 s0 op s1의 모양을 반환합니다.
요약
모양을 나타내는 텐서인 s0
및 s1
주어지면 브로드캐스팅된 모양인 r0
계산합니다. s0
, s1
및 r0
은 모두 정수 벡터입니다.
인수:
보고:
공개 속성
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-26(UTC)
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["필요한 정보가 없음","missingTheInformationINeed","thumb-down"],["너무 복잡함/단계 수가 너무 많음","tooComplicatedTooManySteps","thumb-down"],["오래됨","outOfDate","thumb-down"],["번역 문제","translationIssue","thumb-down"],["샘플/코드 문제","samplesCodeIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-07-26(UTC)"],[],[],null,["# tensorflow::ops::BroadcastDynamicShape Class Reference\n\ntensorflow::ops::BroadcastDynamicShape\n======================================\n\n`#include \u003carray_ops.h\u003e`\n\nReturn the shape of s0 op s1 with broadcast.\n\nSummary\n-------\n\nGiven `s0` and `s1`, tensors that represent shapes, compute `r0`, the broadcasted shape. `s0`, `s1` and `r0` are all integer vectors.\n\nArguments:\n\n- scope: A [Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The r0 tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [BroadcastDynamicShape](#classtensorflow_1_1ops_1_1_broadcast_dynamic_shape_1a6672d4b43b8122a2ebadcb84b0a33ffa)`(const ::`[tensorflow::Scope](/versions/r1.15/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` s0, ::`[tensorflow::Input](/versions/r1.15/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` s1)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_broadcast_dynamic_shape_1a2812a907f6572e464a52d236c77632cd) | [Operation](/versions/r1.15/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [r0](#classtensorflow_1_1ops_1_1_broadcast_dynamic_shape_1a8f8ea2cc676b86d7bc6f4e9466033607) | `::`[tensorflow::Output](/versions/r1.15/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_broadcast_dynamic_shape_1a315dcdda63283a0ff7e83587d69c6d18)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_broadcast_dynamic_shape_1af1253260f384caf7bd281e19ff4350df)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_broadcast_dynamic_shape_1a69e5f15b0ae2eaf6ce1912459a56e84e)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### r0\n\n```text\n::tensorflow::Output r0\n``` \n\nPublic functions\n----------------\n\n### BroadcastDynamicShape\n\n```gdscript\n BroadcastDynamicShape(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input s0,\n ::tensorflow::Input s1\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]