Agents is a library for reinforcement learning in TensorFlow.
import tensorflow as tf from tf_agents.networks import q_network from tf_agents.agents.dqn import dqn_agent q_net = q_network.QNetwork( train_env.observation_spec(), train_env.action_spec(), fc_layer_params=(100,)) agent = dqn_agent.DqnAgent( train_env.time_step_spec(), train_env.action_spec(), q_network=q_net, optimizer=optimizer, td_errors_loss_fn=common.element_wise_squared_loss, train_step_counter=tf.Variable(0)) agent.initialize()Run in a Notebook
TF-Agents makes designing, implementing and testing new RL algorithms easier, by providing well tested modular components that can be modified and extended. It enables fast code iteration, with good test integration and benchmarking.