Attend the Women in ML Symposium on December 7 Register now
Stay organized with collections Save and categorize content based on your preferences.

tensorflow::ops::ResourceApplyAdamWithAmsgrad

#include <training_ops.h>

Update '*var' according to the Adam algorithm.

Summary

$$\text{lr}_t := \mathrm{learning_rate} * \sqrt{1 - \beta_2^t} / (1 - \beta_1^t)$$ $$m_t := \beta_1 * m_{t-1} + (1 - \beta_1) * g$$ $$v_t := \beta_2 * v_{t-1} + (1 - \beta_2) * g * g$$ $$\hat{v}_t := max{\hat{v}_{t-1}, v_t}$$ $$\text{variable} := \text{variable} - \text{lr}_t * m_t / (\sqrt{\hat{v}_t} + \epsilon)$$

Args:

  • scope: A Scope object
  • var: Should be from a Variable().
  • m: Should be from a Variable().
  • v: Should be from a Variable().
  • vhat: Should be from a Variable().
  • beta1_power: Must be a scalar.
  • beta2_power: Must be a scalar.
  • lr: Scaling factor. Must be a scalar.
  • beta1: Momentum factor. Must be a scalar.
  • beta2: Momentum factor. Must be a scalar.
  • epsilon: Ridge term. Must be a scalar.
  • grad: The gradient.

Optional attributes (see Attrs):

  • use_locking: If True, updating of the var, m, and v tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:

Constructors and Destructors

ResourceApplyAdamWithAmsgrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input m, ::tensorflow::Input v, ::tensorflow::Input vhat, ::tensorflow::Input beta1_power, ::tensorflow::Input beta2_power, ::tensorflow::Input lr, ::tensorflow::Input beta1, ::tensorflow::Input beta2, ::tensorflow::Input epsilon, ::tensorflow::Input grad)
ResourceApplyAdamWithAmsgrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input m, ::tensorflow::Input v, ::tensorflow::Input vhat, ::tensorflow::Input beta1_power, ::tensorflow::Input beta2_power, ::tensorflow::Input lr, ::tensorflow::Input beta1, ::tensorflow::Input beta2, ::tensorflow::Input epsilon, ::tensorflow::Input grad, const ResourceApplyAdamWithAmsgrad::Attrs & attrs)

Public attributes

operation

Public functions

operator::tensorflow::Operation() const

Public static functions

UseLocking(bool x)

Structs

tensorflow::ops::ResourceApplyAdamWithAmsgrad::Attrs

Optional attribute setters for ResourceApplyAdamWithAmsgrad.

Public attributes

operation

Operation operation

Public functions

ResourceApplyAdamWithAmsgrad

 ResourceApplyAdamWithAmsgrad(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input m,
  ::tensorflow::Input v,
  ::tensorflow::Input vhat,
  ::tensorflow::Input beta1_power,
  ::tensorflow::Input beta2_power,
  ::tensorflow::Input lr,
  ::tensorflow::Input beta1,
  ::tensorflow::Input beta2,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad
)

ResourceApplyAdamWithAmsgrad

 ResourceApplyAdamWithAmsgrad(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input m,
  ::tensorflow::Input v,
  ::tensorflow::Input vhat,
  ::tensorflow::Input beta1_power,
  ::tensorflow::Input beta2_power,
  ::tensorflow::Input lr,
  ::tensorflow::Input beta1,
  ::tensorflow::Input beta2,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad,
  const ResourceApplyAdamWithAmsgrad::Attrs & attrs
)

operator::tensorflow::Operation

 operator::tensorflow::Operation() const 

Public static functions

UseLocking

Attrs UseLocking(
  bool x
)