This simple example demonstrates how to plug TensorFlow Datasets (TFDS) into a Keras model.
View on TensorFlow.org
|
Run in Google Colab
|
View source on GitHub
|
Download notebook
|
import tensorflow as tf
import tensorflow_datasets as tfds
Step 1: Create your input pipeline
Start by building an efficient input pipeline using advices from:
- The Performance tips guide
- The Better performance with the
tf.dataAPI guide
Load a dataset
Load the MNIST dataset with the following arguments:
shuffle_files=True: The MNIST data is only stored in a single file, but for larger datasets with multiple files on disk, it's good practice to shuffle them when training.as_supervised=True: Returns a tuple(img, label)instead of a dictionary{'image': img, 'label': label}.
(ds_train, ds_test), ds_info = tfds.load(
'mnist',
split=['train', 'test'],
shuffle_files=True,
as_supervised=True,
with_info=True,
)
2026-01-15 12:12:40.447201: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
Build a training pipeline
Apply the following transformations:
tf.data.Dataset.map: TFDS provide images of typetf.uint8, while the model expectstf.float32. Therefore, you need to normalize images.tf.data.Dataset.cacheAs you fit the dataset in memory, cache it before shuffling for a better performance.
Note: Random transformations should be applied after caching.tf.data.Dataset.shuffle: For true randomness, set the shuffle buffer to the full dataset size.
Note: For large datasets that can't fit in memory, usebuffer_size=1000if your system allows it.tf.data.Dataset.batch: Batch elements of the dataset after shuffling to get unique batches at each epoch.tf.data.Dataset.prefetch: It is good practice to end the pipeline by prefetching for performance.
def normalize_img(image, label):
"""Normalizes images: `uint8` -> `float32`."""
return tf.cast(image, tf.float32) / 255., label
ds_train = ds_train.map(
normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_train = ds_train.cache()
ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples)
ds_train = ds_train.batch(128)
ds_train = ds_train.prefetch(tf.data.AUTOTUNE)
Build an evaluation pipeline
Your testing pipeline is similar to the training pipeline with small differences:
- You don't need to call
tf.data.Dataset.shuffle. - Caching is done after batching because batches can be the same between epochs.
ds_test = ds_test.map(
normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_test = ds_test.batch(128)
ds_test = ds_test.cache()
ds_test = ds_test.prefetch(tf.data.AUTOTUNE)
Step 2: Create and train the model
Plug the TFDS input pipeline into a simple Keras model, compile the model, and train it.
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
model.fit(
ds_train,
epochs=6,
validation_data=ds_test,
)
Epoch 1/6 /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras/src/layers/reshaping/flatten.py:37: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead. super().__init__(**kwargs) 469/469 ━━━━━━━━━━━━━━━━━━━━ 4s 4ms/step - loss: 0.6206 - sparse_categorical_accuracy: 0.8293 - val_loss: 0.1876 - val_sparse_categorical_accuracy: 0.9457 Epoch 2/6 469/469 ━━━━━━━━━━━━━━━━━━━━ 2s 3ms/step - loss: 0.1740 - sparse_categorical_accuracy: 0.9514 - val_loss: 0.1374 - val_sparse_categorical_accuracy: 0.9614 Epoch 3/6 469/469 ━━━━━━━━━━━━━━━━━━━━ 2s 3ms/step - loss: 0.1212 - sparse_categorical_accuracy: 0.9656 - val_loss: 0.1098 - val_sparse_categorical_accuracy: 0.9668 Epoch 4/6 469/469 ━━━━━━━━━━━━━━━━━━━━ 2s 3ms/step - loss: 0.0906 - sparse_categorical_accuracy: 0.9724 - val_loss: 0.0974 - val_sparse_categorical_accuracy: 0.9702 Epoch 5/6 469/469 ━━━━━━━━━━━━━━━━━━━━ 2s 3ms/step - loss: 0.0740 - sparse_categorical_accuracy: 0.9792 - val_loss: 0.0894 - val_sparse_categorical_accuracy: 0.9726 Epoch 6/6 469/469 ━━━━━━━━━━━━━━━━━━━━ 2s 3ms/step - loss: 0.0615 - sparse_categorical_accuracy: 0.9822 - val_loss: 0.0858 - val_sparse_categorical_accuracy: 0.9738 <keras.src.callbacks.history.History at 0x7f1d38ba57f0>
View on TensorFlow.org
Run in Google Colab
View source on GitHub
Download notebook