This simple example demonstrates how to plug TensorFlow Datasets (TFDS) into a Keras model.
![]() |
![]() |
![]() |
![]() |
import tensorflow as tf
import tensorflow_datasets as tfds
2022-12-14 12:10:12.401315: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory 2022-12-14 12:10:12.401417: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory 2022-12-14 12:10:12.401428: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
Step 1: Create your input pipeline
Start by building an efficient input pipeline using advices from:
- The Performance tips guide
- The Better performance with the
tf.data
API guide
Load a dataset
Load the MNIST dataset with the following arguments:
shuffle_files=True
: The MNIST data is only stored in a single file, but for larger datasets with multiple files on disk, it's good practice to shuffle them when training.as_supervised=True
: Returns a tuple(img, label)
instead of a dictionary{'image': img, 'label': label}
.
(ds_train, ds_test), ds_info = tfds.load(
'mnist',
split=['train', 'test'],
shuffle_files=True,
as_supervised=True,
with_info=True,
)
2022-12-14 12:10:14.569060: E tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:267] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
Build a training pipeline
Apply the following transformations:
tf.data.Dataset.map
: TFDS provide images of typetf.uint8
, while the model expectstf.float32
. Therefore, you need to normalize images.tf.data.Dataset.cache
As you fit the dataset in memory, cache it before shuffling for a better performance.
Note: Random transformations should be applied after caching.tf.data.Dataset.shuffle
: For true randomness, set the shuffle buffer to the full dataset size.
Note: For large datasets that can't fit in memory, usebuffer_size=1000
if your system allows it.tf.data.Dataset.batch
: Batch elements of the dataset after shuffling to get unique batches at each epoch.tf.data.Dataset.prefetch
: It is good practice to end the pipeline by prefetching for performance.
def normalize_img(image, label):
"""Normalizes images: `uint8` -> `float32`."""
return tf.cast(image, tf.float32) / 255., label
ds_train = ds_train.map(
normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_train = ds_train.cache()
ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples)
ds_train = ds_train.batch(128)
ds_train = ds_train.prefetch(tf.data.AUTOTUNE)
Build an evaluation pipeline
Your testing pipeline is similar to the training pipeline with small differences:
- You don't need to call
tf.data.Dataset.shuffle
. - Caching is done after batching because batches can be the same between epochs.
ds_test = ds_test.map(
normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_test = ds_test.batch(128)
ds_test = ds_test.cache()
ds_test = ds_test.prefetch(tf.data.AUTOTUNE)
Step 2: Create and train the model
Plug the TFDS input pipeline into a simple Keras model, compile the model, and train it.
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
model.fit(
ds_train,
epochs=6,
validation_data=ds_test,
)
Epoch 1/6 469/469 [==============================] - 4s 4ms/step - loss: 0.3592 - sparse_categorical_accuracy: 0.9014 - val_loss: 0.1962 - val_sparse_categorical_accuracy: 0.9435 Epoch 2/6 469/469 [==============================] - 1s 2ms/step - loss: 0.1669 - sparse_categorical_accuracy: 0.9519 - val_loss: 0.1411 - val_sparse_categorical_accuracy: 0.9597 Epoch 3/6 469/469 [==============================] - 1s 2ms/step - loss: 0.1197 - sparse_categorical_accuracy: 0.9658 - val_loss: 0.1110 - val_sparse_categorical_accuracy: 0.9674 Epoch 4/6 469/469 [==============================] - 1s 2ms/step - loss: 0.0923 - sparse_categorical_accuracy: 0.9736 - val_loss: 0.1000 - val_sparse_categorical_accuracy: 0.9689 Epoch 5/6 469/469 [==============================] - 1s 2ms/step - loss: 0.0743 - sparse_categorical_accuracy: 0.9787 - val_loss: 0.0864 - val_sparse_categorical_accuracy: 0.9735 Epoch 6/6 469/469 [==============================] - 1s 2ms/step - loss: 0.0607 - sparse_categorical_accuracy: 0.9824 - val_loss: 0.0825 - val_sparse_categorical_accuracy: 0.9750 <keras.callbacks.History at 0x7f9bc821b3d0>