This simple example demonstrate how to plug TFDS into a Keras model.
![]() |
![]() |
![]() |
![]() |
import tensorflow as tf
import tensorflow_datasets as tfds
Step 1: Create your input pipeline
Build efficient input pipeline using advices from:
Load MNIST
Load with the following arguments:
shuffle_files
: The MNIST data is only stored in a single file, but for larger datasets with multiple files on disk, it's good practice to shuffle them when training.as_supervised
: Returns tuple(img, label)
instead of dict{'image': img, 'label': label}
(ds_train, ds_test), ds_info = tfds.load(
'mnist',
split=['train', 'test'],
shuffle_files=True,
as_supervised=True,
with_info=True,
)
Build training pipeline
Apply the following transormations:
ds.map
: TFDS provide the images as tf.uint8, while the model expect tf.float32, so normalize imagesds.cache
As the dataset fit in memory, cache before shuffling for better performance.
Note: Random transformations should be applied after cachingds.shuffle
: For true randomness, set the shuffle buffer to the full dataset size.
Note: For bigger datasets which do not fit in memory, a standard value is 1000 if your system allows it.ds.batch
: Batch after shuffling to get unique batches at each epoch.ds.prefetch
: Good practice to end the pipeline by prefetching for performances.
def normalize_img(image, label):
"""Normalizes images: `uint8` -> `float32`."""
return tf.cast(image, tf.float32) / 255., label
ds_train = ds_train.map(
normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds_train = ds_train.cache()
ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples)
ds_train = ds_train.batch(128)
ds_train = ds_train.prefetch(tf.data.experimental.AUTOTUNE)
Build evaluation pipeline
Testing pipeline is similar to the training pipeline, with small differences:
- No
ds.shuffle()
call - Caching is done after batching (as batches can be the same between epoch)
ds_test = ds_test.map(
normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds_test = ds_test.batch(128)
ds_test = ds_test.cache()
ds_test = ds_test.prefetch(tf.data.experimental.AUTOTUNE)
Step 2: Create and train the model
Plug the input pipeline into Keras.
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128,activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
model.fit(
ds_train,
epochs=6,
validation_data=ds_test,
)
Epoch 1/6 469/469 [==============================] - 4s 4ms/step - loss: 0.6240 - sparse_categorical_accuracy: 0.8288 - val_loss: 0.2043 - val_sparse_categorical_accuracy: 0.9424 Epoch 2/6 469/469 [==============================] - 1s 2ms/step - loss: 0.1796 - sparse_categorical_accuracy: 0.9499 - val_loss: 0.1395 - val_sparse_categorical_accuracy: 0.9598 Epoch 3/6 469/469 [==============================] - 1s 2ms/step - loss: 0.1215 - sparse_categorical_accuracy: 0.9642 - val_loss: 0.1137 - val_sparse_categorical_accuracy: 0.9678 Epoch 4/6 469/469 [==============================] - 1s 2ms/step - loss: 0.0968 - sparse_categorical_accuracy: 0.9724 - val_loss: 0.0974 - val_sparse_categorical_accuracy: 0.9707 Epoch 5/6 469/469 [==============================] - 1s 2ms/step - loss: 0.0774 - sparse_categorical_accuracy: 0.9775 - val_loss: 0.0852 - val_sparse_categorical_accuracy: 0.9766 Epoch 6/6 469/469 [==============================] - 1s 2ms/step - loss: 0.0631 - sparse_categorical_accuracy: 0.9811 - val_loss: 0.0868 - val_sparse_categorical_accuracy: 0.9735 <tensorflow.python.keras.callbacks.History at 0x7f70782baa58>