در سمپوزیوم زنان در ML در 7 دسامبر شرکت کنید هم اکنون ثبت نام کنید

مجموعه داده های TensorFlow

با مجموعه‌ها، منظم بمانید ذخیره و دسته‌بندی محتوا براساس اولویت‌های شما.

TFDS مجموعه ای از مجموعه داده های آماده برای استفاده با TensorFlow، Jax و سایر چارچوب های یادگیری ماشین را ارائه می دهد.

دانلود و آماده سازی داده ها را به طور قطعی انجام می دهد و یک tf.data.Dataset (یا np.array ) می سازد.

مشاهده در TensorFlow.org در Google Colab اجرا شود مشاهده منبع در GitHub دانلود دفترچه یادداشت

نصب و راه اندازی

TFDS در دو بسته وجود دارد:

  • pip install tensorflow-datasets : نسخه پایدار، هر چند ماه یکبار منتشر می شود.
  • pip install tfds-nightly : هر روز منتشر می شود، حاوی آخرین نسخه از مجموعه داده ها است.

این colab از tfds-nightly استفاده می کند:

pip install -q tfds-nightly tensorflow matplotlib
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

import tensorflow_datasets as tfds

مجموعه داده های موجود را پیدا کنید

همه سازندگان مجموعه داده ها زیر کلاس tfds.core.DatasetBuilder هستند. برای دریافت لیست سازنده های موجود، از tfds.list_builders() استفاده کنید یا به کاتالوگ ما نگاه کنید.

tfds.list_builders()
['abstract_reasoning',
 'accentdb',
 'aeslc',
 'aflw2k3d',
 'ag_news_subset',
 'ai2_arc',
 'ai2_arc_with_ir',
 'amazon_us_reviews',
 'anli',
 'arc',
 'asset',
 'assin2',
 'bair_robot_pushing_small',
 'bccd',
 'beans',
 'bee_dataset',
 'big_patent',
 'bigearthnet',
 'billsum',
 'binarized_mnist',
 'binary_alpha_digits',
 'blimp',
 'booksum',
 'bool_q',
 'c4',
 'caltech101',
 'caltech_birds2010',
 'caltech_birds2011',
 'cardiotox',
 'cars196',
 'cassava',
 'cats_vs_dogs',
 'celeb_a',
 'celeb_a_hq',
 'cfq',
 'cherry_blossoms',
 'chexpert',
 'cifar10',
 'cifar100',
 'cifar10_1',
 'cifar10_corrupted',
 'citrus_leaves',
 'cityscapes',
 'civil_comments',
 'clevr',
 'clic',
 'clinc_oos',
 'cmaterdb',
 'cnn_dailymail',
 'coco',
 'coco_captions',
 'coil100',
 'colorectal_histology',
 'colorectal_histology_large',
 'common_voice',
 'coqa',
 'cos_e',
 'cosmos_qa',
 'covid19',
 'covid19sum',
 'crema_d',
 'cs_restaurants',
 'curated_breast_imaging_ddsm',
 'cycle_gan',
 'd4rl_adroit_door',
 'd4rl_adroit_hammer',
 'd4rl_adroit_pen',
 'd4rl_adroit_relocate',
 'd4rl_antmaze',
 'd4rl_mujoco_ant',
 'd4rl_mujoco_halfcheetah',
 'd4rl_mujoco_hopper',
 'd4rl_mujoco_walker2d',
 'dart',
 'davis',
 'deep_weeds',
 'definite_pronoun_resolution',
 'dementiabank',
 'diabetic_retinopathy_detection',
 'diamonds',
 'div2k',
 'dmlab',
 'doc_nli',
 'dolphin_number_word',
 'domainnet',
 'downsampled_imagenet',
 'drop',
 'dsprites',
 'dtd',
 'duke_ultrasound',
 'e2e_cleaned',
 'efron_morris75',
 'emnist',
 'eraser_multi_rc',
 'esnli',
 'eurosat',
 'fashion_mnist',
 'flic',
 'flores',
 'food101',
 'forest_fires',
 'fuss',
 'gap',
 'geirhos_conflict_stimuli',
 'gem',
 'genomics_ood',
 'german_credit_numeric',
 'gigaword',
 'glue',
 'goemotions',
 'gov_report',
 'gpt3',
 'gref',
 'groove',
 'grounded_scan',
 'gsm8k',
 'gtzan',
 'gtzan_music_speech',
 'hellaswag',
 'higgs',
 'horses_or_humans',
 'howell',
 'i_naturalist2017',
 'i_naturalist2018',
 'imagenet2012',
 'imagenet2012_corrupted',
 'imagenet2012_multilabel',
 'imagenet2012_real',
 'imagenet2012_subset',
 'imagenet_a',
 'imagenet_lt',
 'imagenet_r',
 'imagenet_resized',
 'imagenet_sketch',
 'imagenet_v2',
 'imagenette',
 'imagewang',
 'imdb_reviews',
 'irc_disentanglement',
 'iris',
 'istella',
 'kddcup99',
 'kitti',
 'kmnist',
 'lambada',
 'lfw',
 'librispeech',
 'librispeech_lm',
 'libritts',
 'ljspeech',
 'lm1b',
 'locomotion',
 'lost_and_found',
 'lsun',
 'lvis',
 'malaria',
 'math_dataset',
 'math_qa',
 'mctaco',
 'mlqa',
 'mnist',
 'mnist_corrupted',
 'movie_lens',
 'movie_rationales',
 'movielens',
 'moving_mnist',
 'mslr_web',
 'multi_news',
 'multi_nli',
 'multi_nli_mismatch',
 'natural_questions',
 'natural_questions_open',
 'newsroom',
 'nsynth',
 'nyu_depth_v2',
 'ogbg_molpcba',
 'omniglot',
 'open_images_challenge2019_detection',
 'open_images_v4',
 'openbookqa',
 'opinion_abstracts',
 'opinosis',
 'opus',
 'oxford_flowers102',
 'oxford_iiit_pet',
 'para_crawl',
 'pass',
 'patch_camelyon',
 'paws_wiki',
 'paws_x_wiki',
 'penguins',
 'pet_finder',
 'pg19',
 'piqa',
 'places365_small',
 'plant_leaves',
 'plant_village',
 'plantae_k',
 'protein_net',
 'qa4mre',
 'qasc',
 'quac',
 'quality',
 'quickdraw_bitmap',
 'race',
 'radon',
 'reddit',
 'reddit_disentanglement',
 'reddit_tifu',
 'ref_coco',
 'resisc45',
 'rlu_atari',
 'rlu_atari_checkpoints',
 'rlu_atari_checkpoints_ordered',
 'rlu_dmlab_explore_object_rewards_few',
 'rlu_dmlab_explore_object_rewards_many',
 'rlu_dmlab_rooms_select_nonmatching_object',
 'rlu_dmlab_rooms_watermaze',
 'rlu_dmlab_seekavoid_arena01',
 'rlu_rwrl',
 'robomimic_ph',
 'robonet',
 'robosuite_panda_pick_place_can',
 'rock_paper_scissors',
 'rock_you',
 's3o4d',
 'salient_span_wikipedia',
 'samsum',
 'savee',
 'scan',
 'scene_parse150',
 'schema_guided_dialogue',
 'scicite',
 'scientific_papers',
 'scrolls',
 'sentiment140',
 'shapes3d',
 'siscore',
 'smallnorb',
 'smartwatch_gestures',
 'snli',
 'so2sat',
 'speech_commands',
 'spoken_digit',
 'squad',
 'squad_question_generation',
 'stanford_dogs',
 'stanford_online_products',
 'star_cfq',
 'starcraft_video',
 'stl10',
 'story_cloze',
 'summscreen',
 'sun397',
 'super_glue',
 'svhn_cropped',
 'symmetric_solids',
 'tao',
 'ted_hrlr_translate',
 'ted_multi_translate',
 'tedlium',
 'tf_flowers',
 'the300w_lp',
 'tiny_shakespeare',
 'titanic',
 'trec',
 'trivia_qa',
 'tydi_qa',
 'uc_merced',
 'ucf101',
 'vctk',
 'visual_domain_decathlon',
 'voc',
 'voxceleb',
 'voxforge',
 'waymo_open_dataset',
 'web_nlg',
 'web_questions',
 'wider_face',
 'wiki40b',
 'wiki_auto',
 'wiki_bio',
 'wiki_table_questions',
 'wiki_table_text',
 'wikiann',
 'wikihow',
 'wikipedia',
 'wikipedia_toxicity_subtypes',
 'wine_quality',
 'winogrande',
 'wit',
 'wit_kaggle',
 'wmt13_translate',
 'wmt14_translate',
 'wmt15_translate',
 'wmt16_translate',
 'wmt17_translate',
 'wmt18_translate',
 'wmt19_translate',
 'wmt_t2t_translate',
 'wmt_translate',
 'wordnet',
 'wsc273',
 'xnli',
 'xquad',
 'xsum',
 'xtreme_pawsx',
 'xtreme_xnli',
 'yelp_polarity_reviews',
 'yes_no',
 'youtube_vis',
 'huggingface:acronym_identification',
 'huggingface:ade_corpus_v2',
 'huggingface:adversarial_qa',
 'huggingface:aeslc',
 'huggingface:afrikaans_ner_corpus',
 'huggingface:ag_news',
 'huggingface:ai2_arc',
 'huggingface:air_dialogue',
 'huggingface:ajgt_twitter_ar',
 'huggingface:allegro_reviews',
 'huggingface:allocine',
 'huggingface:alt',
 'huggingface:amazon_polarity',
 'huggingface:amazon_reviews_multi',
 'huggingface:amazon_us_reviews',
 'huggingface:ambig_qa',
 'huggingface:americas_nli',
 'huggingface:ami',
 'huggingface:amttl',
 'huggingface:anli',
 'huggingface:app_reviews',
 'huggingface:aqua_rat',
 'huggingface:aquamuse',
 'huggingface:ar_cov19',
 'huggingface:ar_res_reviews',
 'huggingface:ar_sarcasm',
 'huggingface:arabic_billion_words',
 'huggingface:arabic_pos_dialect',
 'huggingface:arabic_speech_corpus',
 'huggingface:arcd',
 'huggingface:arsentd_lev',
 'huggingface:art',
 'huggingface:arxiv_dataset',
 'huggingface:ascent_kb',
 'huggingface:aslg_pc12',
 'huggingface:asnq',
 'huggingface:asset',
 'huggingface:assin',
 'huggingface:assin2',
 'huggingface:atomic',
 'huggingface:autshumato',
 'huggingface:babi_qa',
 'huggingface:banking77',
 'huggingface:bbaw_egyptian',
 'huggingface:bbc_hindi_nli',
 'huggingface:bc2gm_corpus',
 'huggingface:beans',
 'huggingface:best2009',
 'huggingface:bianet',
 'huggingface:bible_para',
 'huggingface:big_patent',
 'huggingface:billsum',
 'huggingface:bing_coronavirus_query_set',
 'huggingface:biomrc',
 'huggingface:biosses',
 'huggingface:blbooksgenre',
 'huggingface:blended_skill_talk',
 'huggingface:blimp',
 'huggingface:blog_authorship_corpus',
 'huggingface:bn_hate_speech',
 'huggingface:bookcorpus',
 'huggingface:bookcorpusopen',
 'huggingface:boolq',
 'huggingface:bprec',
 'huggingface:break_data',
 'huggingface:brwac',
 'huggingface:bsd_ja_en',
 'huggingface:bswac',
 'huggingface:c3',
 'huggingface:c4',
 'huggingface:cail2018',
 'huggingface:caner',
 'huggingface:capes',
 'huggingface:casino',
 'huggingface:catalonia_independence',
 'huggingface:cats_vs_dogs',
 'huggingface:cawac',
 'huggingface:cbt',
 'huggingface:cc100',
 'huggingface:cc_news',
 'huggingface:ccaligned_multilingual',
 'huggingface:cdsc',
 'huggingface:cdt',
 'huggingface:cedr',
 'huggingface:cfq',
 'huggingface:chr_en',
 'huggingface:cifar10',
 'huggingface:cifar100',
 'huggingface:circa',
 'huggingface:civil_comments',
 'huggingface:clickbait_news_bg',
 'huggingface:climate_fever',
 'huggingface:clinc_oos',
 'huggingface:clue',
 'huggingface:cmrc2018',
 'huggingface:cmu_hinglish_dog',
 'huggingface:cnn_dailymail',
 'huggingface:coached_conv_pref',
 'huggingface:coarse_discourse',
 'huggingface:codah',
 'huggingface:code_search_net',
 'huggingface:code_x_glue_cc_clone_detection_big_clone_bench',
 'huggingface:code_x_glue_cc_clone_detection_poj104',
 'huggingface:code_x_glue_cc_cloze_testing_all',
 'huggingface:code_x_glue_cc_cloze_testing_maxmin',
 'huggingface:code_x_glue_cc_code_completion_line',
 'huggingface:code_x_glue_cc_code_completion_token',
 'huggingface:code_x_glue_cc_code_refinement',
 'huggingface:code_x_glue_cc_code_to_code_trans',
 'huggingface:code_x_glue_cc_defect_detection',
 'huggingface:code_x_glue_ct_code_to_text',
 'huggingface:code_x_glue_tc_nl_code_search_adv',
 'huggingface:code_x_glue_tc_text_to_code',
 'huggingface:code_x_glue_tt_text_to_text',
 'huggingface:com_qa',
 'huggingface:common_gen',
 'huggingface:common_language',
 'huggingface:common_voice',
 'huggingface:commonsense_qa',
 'huggingface:competition_math',
 'huggingface:compguesswhat',
 'huggingface:conceptnet5',
 'huggingface:conll2000',
 'huggingface:conll2002',
 'huggingface:conll2003',
 'huggingface:conllpp',
 'huggingface:conv_ai',
 'huggingface:conv_ai_2',
 'huggingface:conv_ai_3',
 'huggingface:conv_questions',
 'huggingface:coqa',
 'huggingface:cord19',
 'huggingface:cornell_movie_dialog',
 'huggingface:cos_e',
 'huggingface:cosmos_qa',
 'huggingface:counter',
 'huggingface:covid_qa_castorini',
 'huggingface:covid_qa_deepset',
 'huggingface:covid_qa_ucsd',
 'huggingface:covid_tweets_japanese',
 'huggingface:covost2',
 'huggingface:craigslist_bargains',
 'huggingface:crawl_domain',
 'huggingface:crd3',
 'huggingface:crime_and_punish',
 'huggingface:crows_pairs',
 'huggingface:cryptonite',
 'huggingface:cs_restaurants',
 'huggingface:cuad',
 'huggingface:curiosity_dialogs',
 'huggingface:daily_dialog',
 'huggingface:dane',
 'huggingface:danish_political_comments',
 'huggingface:dart',
 'huggingface:datacommons_factcheck',
 'huggingface:dbpedia_14',
 'huggingface:dbrd',
 'huggingface:deal_or_no_dialog',
 'huggingface:definite_pronoun_resolution',
 'huggingface:dengue_filipino',
 'huggingface:dialog_re',
 'huggingface:diplomacy_detection',
 'huggingface:disaster_response_messages',
 'huggingface:discofuse',
 'huggingface:discovery',
 'huggingface:disfl_qa',
 'huggingface:doc2dial',
 'huggingface:docred',
 'huggingface:doqa',
 'huggingface:dream',
 'huggingface:drop',
 'huggingface:duorc',
 'huggingface:dutch_social',
 'huggingface:dyk',
 'huggingface:e2e_nlg',
 'huggingface:e2e_nlg_cleaned',
 'huggingface:ecb',
 'huggingface:ecthr_cases',
 'huggingface:eduge',
 'huggingface:ehealth_kd',
 'huggingface:eitb_parcc',
 'huggingface:eli5',
 'huggingface:eli5_category',
 'huggingface:emea',
 'huggingface:emo',
 'huggingface:emotion',
 'huggingface:emotone_ar',
 'huggingface:empathetic_dialogues',
 'huggingface:enriched_web_nlg',
 'huggingface:eraser_multi_rc',
 'huggingface:esnli',
 'huggingface:eth_py150_open',
 'huggingface:ethos',
 'huggingface:eu_regulatory_ir',
 'huggingface:eurlex',
 'huggingface:euronews',
 'huggingface:europa_eac_tm',
 'huggingface:europa_ecdc_tm',
 'huggingface:europarl_bilingual',
 'huggingface:event2Mind',
 'huggingface:evidence_infer_treatment',
 'huggingface:exams',
 'huggingface:factckbr',
 'huggingface:fake_news_english',
 'huggingface:fake_news_filipino',
 'huggingface:farsi_news',
 'huggingface:fashion_mnist',
 'huggingface:fever',
 'huggingface:few_rel',
 'huggingface:financial_phrasebank',
 'huggingface:finer',
 'huggingface:flores',
 'huggingface:flue',
 'huggingface:food101',
 'huggingface:fquad',
 'huggingface:freebase_qa',
 'huggingface:gap',
 'huggingface:gem',
 'huggingface:generated_reviews_enth',
 'huggingface:generics_kb',
 'huggingface:german_legal_entity_recognition',
 'huggingface:germaner',
 'huggingface:germeval_14',
 'huggingface:giga_fren',
 'huggingface:gigaword',
 'huggingface:glucose',
 'huggingface:glue',
 'huggingface:gnad10',
 'huggingface:go_emotions',
 'huggingface:gooaq',
 'huggingface:google_wellformed_query',
 'huggingface:grail_qa',
 'huggingface:great_code',
 'huggingface:greek_legal_code',
 'huggingface:guardian_authorship',
 'huggingface:gutenberg_time',
 'huggingface:hans',
 'huggingface:hansards',
 'huggingface:hard',
 'huggingface:harem',
 'huggingface:has_part',
 'huggingface:hate_offensive',
 'huggingface:hate_speech18',
 'huggingface:hate_speech_filipino',
 'huggingface:hate_speech_offensive',
 'huggingface:hate_speech_pl',
 'huggingface:hate_speech_portuguese',
 'huggingface:hatexplain',
 'huggingface:hausa_voa_ner',
 'huggingface:hausa_voa_topics',
 'huggingface:hda_nli_hindi',
 'huggingface:head_qa',
 'huggingface:health_fact',
 'huggingface:hebrew_projectbenyehuda',
 'huggingface:hebrew_sentiment',
 'huggingface:hebrew_this_world',
 'huggingface:hellaswag',
 'huggingface:hendrycks_test',
 'huggingface:hind_encorp',
 'huggingface:hindi_discourse',
 'huggingface:hippocorpus',
 'huggingface:hkcancor',
 'huggingface:hlgd',
 'huggingface:hope_edi',
 'huggingface:hotpot_qa',
 'huggingface:hover',
 'huggingface:hrenwac_para',
 'huggingface:hrwac',
 'huggingface:humicroedit',
 'huggingface:hybrid_qa',
 'huggingface:hyperpartisan_news_detection',
 'huggingface:iapp_wiki_qa_squad',
 'huggingface:id_clickbait',
 'huggingface:id_liputan6',
 'huggingface:id_nergrit_corpus',
 'huggingface:id_newspapers_2018',
 'huggingface:id_panl_bppt',
 'huggingface:id_puisi',
 'huggingface:igbo_english_machine_translation',
 'huggingface:igbo_monolingual',
 'huggingface:igbo_ner',
 'huggingface:ilist',
 'huggingface:imdb',
 'huggingface:imdb_urdu_reviews',
 'huggingface:imppres',
 'huggingface:indic_glue',
 'huggingface:indonli',
 'huggingface:indonlu',
 'huggingface:inquisitive_qg',
 'huggingface:interpress_news_category_tr',
 'huggingface:interpress_news_category_tr_lite',
 'huggingface:irc_disentangle',
 'huggingface:isixhosa_ner_corpus',
 'huggingface:isizulu_ner_corpus',
 'huggingface:iwslt2017',
 'huggingface:jeopardy',
 'huggingface:jfleg',
 'huggingface:jigsaw_toxicity_pred',
 'huggingface:jigsaw_unintended_bias',
 'huggingface:jnlpba',
 'huggingface:journalists_questions',
 'huggingface:kan_hope',
 'huggingface:kannada_news',
 'huggingface:kd_conv',
 'huggingface:kde4',
 'huggingface:kelm',
 'huggingface:kilt_tasks',
 'huggingface:kilt_wikipedia',
 'huggingface:kinnews_kirnews',
 'huggingface:klue',
 'huggingface:kor_3i4k',
 'huggingface:kor_hate',
 'huggingface:kor_ner',
 'huggingface:kor_nli',
 'huggingface:kor_nlu',
 'huggingface:kor_qpair',
 'huggingface:kor_sae',
 'huggingface:kor_sarcasm',
 'huggingface:labr',
 'huggingface:lama',
 'huggingface:lambada',
 'huggingface:large_spanish_corpus',
 'huggingface:laroseda',
 'huggingface:lc_quad',
 'huggingface:lener_br',
 'huggingface:lex_glue',
 'huggingface:liar',
 'huggingface:librispeech_asr',
 'huggingface:librispeech_lm',
 'huggingface:limit',
 'huggingface:lince',
 'huggingface:linnaeus',
 'huggingface:liveqa',
 'huggingface:lj_speech',
 'huggingface:lm1b',
 'huggingface:lst20',
 'huggingface:m_lama',
 'huggingface:mac_morpho',
 'huggingface:makhzan',
 'huggingface:masakhaner',
 'huggingface:math_dataset',
 'huggingface:math_qa',
 'huggingface:matinf',
 'huggingface:mbpp',
 'huggingface:mc4',
 'huggingface:mc_taco',
 'huggingface:md_gender_bias',
 'huggingface:mdd',
 'huggingface:med_hop',
 'huggingface:medal',
 'huggingface:medical_dialog',
 'huggingface:medical_questions_pairs',
 'huggingface:menyo20k_mt',
 'huggingface:meta_woz',
 'huggingface:metooma',
 'huggingface:metrec',
 'huggingface:miam',
 'huggingface:mkb',
 'huggingface:mkqa',
 'huggingface:mlqa',
 'huggingface:mlsum',
 'huggingface:mnist',
 'huggingface:mocha',
 'huggingface:moroco',
 'huggingface:movie_rationales',
 'huggingface:mrqa',
 'huggingface:ms_marco',
 'huggingface:ms_terms',
 'huggingface:msr_genomics_kbcomp',
 'huggingface:msr_sqa',
 'huggingface:msr_text_compression',
 'huggingface:msr_zhen_translation_parity',
 'huggingface:msra_ner',
 'huggingface:mt_eng_vietnamese',
 'huggingface:muchocine',
 'huggingface:multi_booked',
 'huggingface:multi_eurlex',
 'huggingface:multi_news',
 'huggingface:multi_nli',
 'huggingface:multi_nli_mismatch',
 'huggingface:multi_para_crawl',
 'huggingface:multi_re_qa',
 'huggingface:multi_woz_v22',
 'huggingface:multi_x_science_sum',
 'huggingface:multidoc2dial',
 'huggingface:multilingual_librispeech',
 'huggingface:mutual_friends',
 'huggingface:mwsc',
 'huggingface:myanmar_news',
 'huggingface:narrativeqa',
 'huggingface:narrativeqa_manual',
 'huggingface:natural_questions',
 'huggingface:ncbi_disease',
 'huggingface:nchlt',
 'huggingface:ncslgr',
 'huggingface:nell',
 'huggingface:neural_code_search',
 'huggingface:news_commentary',
 'huggingface:newsgroup',
 'huggingface:newsph',
 'huggingface:newsph_nli',
 'huggingface:newspop',
 'huggingface:newsqa',
 'huggingface:newsroom',
 'huggingface:nkjp-ner',
 'huggingface:nli_tr',
 'huggingface:nlu_evaluation_data',
 'huggingface:norec',
 'huggingface:norne',
 'huggingface:norwegian_ner',
 'huggingface:nq_open',
 'huggingface:nsmc',
 'huggingface:numer_sense',
 'huggingface:numeric_fused_head',
 'huggingface:oclar',
 'huggingface:offcombr',
 'huggingface:offenseval2020_tr',
 'huggingface:offenseval_dravidian',
 'huggingface:ofis_publik',
 'huggingface:ohsumed',
 'huggingface:ollie',
 'huggingface:omp',
 'huggingface:onestop_english',
 'huggingface:onestop_qa',
 'huggingface:open_subtitles',
 'huggingface:openai_humaneval',
 'huggingface:openbookqa',
 'huggingface:openslr',
 'huggingface:openwebtext',
 'huggingface:opinosis',
 'huggingface:opus100',
 'huggingface:opus_books',
 'huggingface:opus_dgt',
 'huggingface:opus_dogc',
 'huggingface:opus_elhuyar',
 'huggingface:opus_euconst',
 'huggingface:opus_finlex',
 'huggingface:opus_fiskmo',
 'huggingface:opus_gnome',
 'huggingface:opus_infopankki',
 'huggingface:opus_memat',
 'huggingface:opus_montenegrinsubs',
 'huggingface:opus_openoffice',
 'huggingface:opus_paracrawl',
 'huggingface:opus_rf',
 'huggingface:opus_tedtalks',
 'huggingface:opus_ubuntu',
 'huggingface:opus_wikipedia',
 'huggingface:opus_xhosanavy',
 'huggingface:orange_sum',
 'huggingface:oscar',
 'huggingface:para_crawl',
 'huggingface:para_pat',
 'huggingface:parsinlu_reading_comprehension',
 'huggingface:paws',
 'huggingface:paws-x',
 'huggingface:pec',
 'huggingface:peer_read',
 'huggingface:peoples_daily_ner',
 'huggingface:per_sent',
 'huggingface:persian_ner',
 'huggingface:pg19',
 'huggingface:php',
 'huggingface:piaf',
 'huggingface:pib',
 'huggingface:piqa',
 'huggingface:pn_summary',
 'huggingface:poem_sentiment',
 'huggingface:polemo2',
 'huggingface:poleval2019_cyberbullying',
 'huggingface:poleval2019_mt',
 'huggingface:polsum',
 'huggingface:polyglot_ner',
 'huggingface:prachathai67k',
 'huggingface:pragmeval',
 'huggingface:proto_qa',
 'huggingface:psc',
 'huggingface:ptb_text_only',
 'huggingface:pubmed',
 'huggingface:pubmed_qa',
 'huggingface:py_ast',
 'huggingface:qa4mre',
 'huggingface:qa_srl',
 'huggingface:qa_zre',
 'huggingface:qangaroo',
 'huggingface:qanta',
 'huggingface:qasc',
 'huggingface:qasper',
 'huggingface:qed',
 'huggingface:qed_amara',
 'huggingface:quac',
 'huggingface:quail',
 'huggingface:quarel',
 'huggingface:quartz',
 'huggingface:quora',
 'huggingface:quoref',
 'huggingface:race',
 'huggingface:re_dial',
 'huggingface:reasoning_bg',
 'huggingface:recipe_nlg',
 'huggingface:reclor',
 'huggingface:reddit',
 'huggingface:reddit_tifu',
 'huggingface:refresd',
 'huggingface:reuters21578',
 'huggingface:riddle_sense',
 'huggingface:ro_sent',
 'huggingface:ro_sts',
 'huggingface:ro_sts_parallel',
 'huggingface:roman_urdu',
 'huggingface:ronec',
 'huggingface:ropes',
 'huggingface:rotten_tomatoes',
 'huggingface:russian_super_glue',
 'huggingface:s2orc',
 'huggingface:samsum',
 'huggingface:sanskrit_classic',
 'huggingface:saudinewsnet',
 'huggingface:sberquad',
 'huggingface:scan',
 'huggingface:scb_mt_enth_2020',
 'huggingface:schema_guided_dstc8',
 'huggingface:scicite',
 'huggingface:scielo',
 'huggingface:scientific_papers',
 'huggingface:scifact',
 'huggingface:sciq',
 'huggingface:scitail',
 'huggingface:scitldr',
 'huggingface:search_qa',
 'huggingface:sede',
 'huggingface:selqa',
 'huggingface:sem_eval_2010_task_8',
 'huggingface:sem_eval_2014_task_1',
 'huggingface:sem_eval_2018_task_1',
 'huggingface:sem_eval_2020_task_11',
 'huggingface:sent_comp',
 'huggingface:senti_lex',
 'huggingface:senti_ws',
 'huggingface:sentiment140',
 'huggingface:sepedi_ner',
 'huggingface:sesotho_ner_corpus',
 'huggingface:setimes',
 'huggingface:setswana_ner_corpus',
 'huggingface:sharc',
 'huggingface:sharc_modified',
 'huggingface:sick',
 'huggingface:silicone',
 'huggingface:simple_questions_v2',
 'huggingface:siswati_ner_corpus',
 'huggingface:smartdata',
 'huggingface:sms_spam',
 'huggingface:snips_built_in_intents',
 'huggingface:snli',
 'huggingface:snow_simplified_japanese_corpus',
 'huggingface:so_stacksample',
 'huggingface:social_bias_frames',
 'huggingface:social_i_qa',
 'huggingface:sofc_materials_articles',
 'huggingface:sogou_news',
 'huggingface:spanish_billion_words',
 'huggingface:spc',
 'huggingface:species_800',
 'huggingface:speech_commands',
 'huggingface:spider',
 'huggingface:squad',
 'huggingface:squad_adversarial',
 'huggingface:squad_es',
 'huggingface:squad_it',
 'huggingface:squad_kor_v1',
 'huggingface:squad_kor_v2',
 'huggingface:squad_v1_pt',
 'huggingface:squad_v2',
 'huggingface:squadshifts',
 'huggingface:srwac',
 'huggingface:sst',
 'huggingface:stereoset',
 'huggingface:story_cloze',
 'huggingface:stsb_mt_sv',
 'huggingface:stsb_multi_mt',
 'huggingface:style_change_detection',
 'huggingface:subjqa',
 'huggingface:super_glue',
 'huggingface:superb',
 'huggingface:swag',
 'huggingface:swahili',
 'huggingface:swahili_news',
 'huggingface:swda',
 'huggingface:swedish_medical_ner',
 'huggingface:swedish_ner_corpus',
 'huggingface:swedish_reviews',
 'huggingface:swiss_judgment_prediction',
 'huggingface:tab_fact',
 'huggingface:tamilmixsentiment',
 'huggingface:tanzil',
 'huggingface:tapaco',
 'huggingface:tashkeela',
 'huggingface:taskmaster1',
 'huggingface:taskmaster2',
 'huggingface:taskmaster3',
 'huggingface:tatoeba',
 'huggingface:ted_hrlr',
 'huggingface:ted_iwlst2013',
 'huggingface:ted_multi',
 'huggingface:ted_talks_iwslt',
 'huggingface:telugu_books',
 'huggingface:telugu_news',
 'huggingface:tep_en_fa_para',
 'huggingface:thai_toxicity_tweet',
 'huggingface:thainer',
 'huggingface:thaiqa_squad',
 'huggingface:thaisum',
 'huggingface:the_pile',
 'huggingface:the_pile_books3',
 'huggingface:the_pile_openwebtext2',
 'huggingface:the_pile_stack_exchange',
 'huggingface:tilde_model',
 'huggingface:time_dial',
 'huggingface:times_of_india_news_headlines',
 'huggingface:timit_asr',
 'huggingface:tiny_shakespeare',
 'huggingface:tlc',
 'huggingface:tmu_gfm_dataset',
 'huggingface:totto',
 'huggingface:trec',
 'huggingface:trivia_qa',
 'huggingface:tsac',
 'huggingface:ttc4900',
 'huggingface:tunizi',
 'huggingface:tuple_ie',
 'huggingface:turk',
 'huggingface:turkish_movie_sentiment',
 'huggingface:turkish_ner',
 'huggingface:turkish_product_reviews',
 'huggingface:turkish_shrinked_ner',
 'huggingface:turku_ner_corpus',
 'huggingface:tweet_eval',
 'huggingface:tweet_qa',
 'huggingface:tweets_ar_en_parallel',
 'huggingface:tweets_hate_speech_detection',
 'huggingface:twi_text_c3',
 'huggingface:twi_wordsim353',
 'huggingface:tydiqa',
 'huggingface:ubuntu_dialogs_corpus',
 'huggingface:udhr',
 'huggingface:um005',
 'huggingface:un_ga',
 'huggingface:un_multi',
 'huggingface:un_pc',
 'huggingface:universal_dependencies',
 'huggingface:universal_morphologies',
 'huggingface:urdu_fake_news',
 'huggingface:urdu_sentiment_corpus',
 'huggingface:vctk',
 'huggingface:vivos',
 'huggingface:web_nlg',
 'huggingface:web_of_science',
 'huggingface:web_questions',
 'huggingface:weibo_ner',
 'huggingface:wi_locness',
 'huggingface:wiki40b',
 'huggingface:wiki_asp',
 'huggingface:wiki_atomic_edits',
 'huggingface:wiki_auto',
 'huggingface:wiki_bio',
 'huggingface:wiki_dpr',
 'huggingface:wiki_hop',
 'huggingface:wiki_lingua',
 'huggingface:wiki_movies',
 'huggingface:wiki_qa',
 'huggingface:wiki_qa_ar',
 'huggingface:wiki_snippets',
 'huggingface:wiki_source',
 'huggingface:wiki_split',
 'huggingface:wiki_summary',
 'huggingface:wikiann',
 'huggingface:wikicorpus',
 'huggingface:wikihow',
 'huggingface:wikipedia',
 'huggingface:wikisql',
 'huggingface:wikitext',
 'huggingface:wikitext_tl39',
 'huggingface:wili_2018',
 'huggingface:wino_bias',
 'huggingface:winograd_wsc',
 'huggingface:winogrande',
 'huggingface:wiqa',
 'huggingface:wisesight1000',
 'huggingface:wisesight_sentiment',
 ...]

یک مجموعه داده را بارگیری کنید

tfds.load

ساده ترین راه برای بارگذاری مجموعه داده tfds.load است. این خواهد شد:

  1. داده ها را دانلود کرده و به عنوان فایل tfrecord ذخیره کنید.
  2. tfrecord را بارگیری کنید و tfrecord را ایجاد tf.data.Dataset .
ds = tfds.load('mnist', split='train', shuffle_files=True)
assert isinstance(ds, tf.data.Dataset)
print(ds)
<_OptionsDataset element_spec={'image': TensorSpec(shape=(28, 28, 1), dtype=tf.uint8, name=None), 'label': TensorSpec(shape=(), dtype=tf.int64, name=None)}>
2022-02-07 04:07:40.542243: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected

برخی از استدلال های رایج:

  • split= : کدام تقسیم برای خواندن (به عنوان مثال 'train' , ['train', 'test'] , 'train[80%:]' ,...). راهنمای تقسیم API ما را ببینید.
  • shuffle_files= : کنترل کنید که آیا فایل ها بین هر دوره به هم ریخته شوند (TFDS مجموعه داده های بزرگ را در چندین فایل کوچکتر ذخیره می کند).
  • data_dir= : مکانی که مجموعه داده در آن ذخیره می شود (پیش فرض ~/tensorflow_datasets/ ) است.
  • with_info=True : tfds.core.DatasetInfo حاوی متادیتای مجموعه داده را برمی گرداند.
  • download=False : دانلود را غیرفعال کنید

tfds.builder

tfds.load یک پوشش نازک در اطراف tfds.core.DatasetBuilder است. با استفاده از tfds.core.DatasetBuilder API می توانید همان خروجی را دریافت کنید:

builder = tfds.builder('mnist')
# 1. Create the tfrecord files (no-op if already exists)
builder.download_and_prepare()
# 2. Load the `tf.data.Dataset`
ds = builder.as_dataset(split='train', shuffle_files=True)
print(ds)
<_OptionsDataset element_spec={'image': TensorSpec(shape=(28, 28, 1), dtype=tf.uint8, name=None), 'label': TensorSpec(shape=(), dtype=tf.int64, name=None)}>

tfds build CLI

اگر می خواهید مجموعه داده خاصی تولید کنید، می توانید از خط فرمان tfds استفاده کنید. مثلا:

tfds build mnist

برای مشاهده پرچم های موجود به سند مراجعه کنید.

تکرار روی یک مجموعه داده

به عنوان دیکته

به طور پیش فرض، شی tf.data.Dataset حاوی یک tf.Tensor dict است:

ds = tfds.load('mnist', split='train')
ds = ds.take(1)  # Only take a single example

for example in ds:  # example is `{'image': tf.Tensor, 'label': tf.Tensor}`
  print(list(example.keys()))
  image = example["image"]
  label = example["label"]
  print(image.shape, label)
['image', 'label']
(28, 28, 1) tf.Tensor(4, shape=(), dtype=int64)
2022-02-07 04:07:41.932638: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

برای یافتن نام و ساختار کلید dict ، به مستندات مجموعه داده در کاتالوگ ما نگاه کنید. به عنوان مثال: اسناد منیست .

به صورت تاپلی ( as_supervised=True )

با استفاده از as_supervised=True ، می توانید به جای مجموعه داده های نظارت شده، یک تاپل (features, label) دریافت کنید.

ds = tfds.load('mnist', split='train', as_supervised=True)
ds = ds.take(1)

for image, label in ds:  # example is (image, label)
  print(image.shape, label)
(28, 28, 1) tf.Tensor(4, shape=(), dtype=int64)
2022-02-07 04:07:42.593594: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

به عنوان numpy ( tfds.as_numpy )

از tfds.as_numpy برای تبدیل استفاده می کند:

  • tf.Tensor -> np.array
  • tf.data.Dataset -> Iterator[Tree[np.array]] ( Tree می تواند دلخواه تو در تو Dict ، Tuple باشد)
ds = tfds.load('mnist', split='train', as_supervised=True)
ds = ds.take(1)

for image, label in tfds.as_numpy(ds):
  print(type(image), type(label), label)
<class 'numpy.ndarray'> <class 'numpy.int64'> 4
2022-02-07 04:07:43.220027: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

به صورت دسته‌ای tf.Tensor ( batch_size=-1 )

با استفاده از batch_size=-1 ، می توانید مجموعه داده کامل را در یک دسته بارگیری کنید.

این را می توان با as_supervised=True و tfds.as_numpy کرد تا داده ها را به صورت (np.array, np.array) :

image, label = tfds.as_numpy(tfds.load(
    'mnist',
    split='test',
    batch_size=-1,
    as_supervised=True,
))

print(type(image), image.shape)
<class 'numpy.ndarray'> (10000, 28, 28, 1)

مراقب باشید که مجموعه داده شما بتواند در حافظه جا شود و همه نمونه ها شکل یکسانی داشته باشند.

مجموعه داده های خود را محک بزنید

محک زدن یک مجموعه داده یک فراخوانی ساده tfds.benchmark بر روی هر تکرار شونده است (به عنوان مثال tf.data.Dataset ، tfds.as_numpy ،...).

ds = tfds.load('mnist', split='train')
ds = ds.batch(32).prefetch(1)

tfds.benchmark(ds, batch_size=32)
tfds.benchmark(ds, batch_size=32)  # Second epoch much faster due to auto-caching
************ Summary ************

Examples/sec (First included) 42295.82 ex/sec (total: 60000 ex, 1.42 sec)
Examples/sec (First only) 131.50 ex/sec (total: 32 ex, 0.24 sec)
Examples/sec (First excluded) 51026.08 ex/sec (total: 59968 ex, 1.18 sec)

************ Summary ************

Examples/sec (First included) 204278.25 ex/sec (total: 60000 ex, 0.29 sec)
Examples/sec (First only) 1444.72 ex/sec (total: 32 ex, 0.02 sec)
Examples/sec (First excluded) 220821.83 ex/sec (total: 59968 ex, 0.27 sec)
  • فراموش نکنید که نتایج را در هر اندازه دسته با batch_size= kwarg عادی کنید.
  • به طور خلاصه، اولین دسته گرم‌آپ از بقیه جدا می‌شود تا زمان راه‌اندازی اضافی tf.data.Dataset را بگیرد (مثلاً راه‌اندازی بافر،...).
  • توجه کنید که چگونه تکرار دوم به دلیل ذخیره خودکار TFDS بسیار سریعتر است.
  • tfds.benchmark یک tfds.core.BenchmarkResult را برمی گرداند که می تواند برای تجزیه و تحلیل بیشتر بررسی شود.

ساخت خط لوله سرتاسر

برای ادامه، می توانید نگاه کنید:

تجسم

tfds.as_dataframe

اشیاء tf.data.Dataset را می توان با pandas.DataFrame به tfds.as_dataframe تبدیل کرد تا در Colab تجسم شود.

  • tfds.core.DatasetInfo را به عنوان آرگومان دوم tfds.as_dataframe برای تجسم تصاویر، صدا، متون، ویدئوها و... اضافه کنید.
  • از ds.take(x) برای نمایش نمونه های x اول استفاده کنید. pandas.DataFrame مجموعه داده کامل را در حافظه بارگذاری می کند و نمایش آن می تواند بسیار گران باشد.
ds, info = tfds.load('mnist', split='train', with_info=True)

tfds.as_dataframe(ds.take(4), info)
2022-02-07 04:07:47.001241: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

tfds.show_examples

tfds.show_examples یک matplotlib.figure.Figure برمی گرداند (اکنون فقط مجموعه داده های تصویر پشتیبانی می شوند):

ds, info = tfds.load('mnist', split='train', with_info=True)

fig = tfds.show_examples(ds, info)
2022-02-07 04:07:48.083706: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

png

به فراداده مجموعه داده دسترسی داشته باشید

همه سازنده ها شامل یک شی tfds.core.DatasetInfo هستند که حاوی متادیتای مجموعه داده است.

دسترسی به آن از طریق:

ds, info = tfds.load('mnist', with_info=True)
builder = tfds.builder('mnist')
info = builder.info

اطلاعات مجموعه شامل اطلاعات اضافی در مورد مجموعه داده (نسخه، نقل قول، صفحه اصلی، توضیحات،...) است.

print(info)
tfds.core.DatasetInfo(
    name='mnist',
    full_name='mnist/3.0.1',
    description="""
    The MNIST database of handwritten digits.
    """,
    homepage='http://yann.lecun.com/exdb/mnist/',
    data_path='gs://tensorflow-datasets/datasets/mnist/3.0.1',
    download_size=11.06 MiB,
    dataset_size=21.00 MiB,
    features=FeaturesDict({
        'image': Image(shape=(28, 28, 1), dtype=tf.uint8),
        'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=10),
    }),
    supervised_keys=('image', 'label'),
    disable_shuffling=False,
    splits={
        'test': <SplitInfo num_examples=10000, num_shards=1>,
        'train': <SplitInfo num_examples=60000, num_shards=1>,
    },
    citation="""@article{lecun2010mnist,
      title={MNIST handwritten digit database},
      author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
      journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
      volume={2},
      year={2010}
    }""",
)

دارای متادیتا (نام برچسب، شکل تصویر،...)

دسترسی به tfds.features.FeatureDict :

info.features
FeaturesDict({
    'image': Image(shape=(28, 28, 1), dtype=tf.uint8),
    'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=10),
})

تعداد کلاس ها، نام برچسب:

print(info.features["label"].num_classes)
print(info.features["label"].names)
print(info.features["label"].int2str(7))  # Human readable version (8 -> 'cat')
print(info.features["label"].str2int('7'))
10
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
7
7

اشکال، dtypes:

print(info.features.shape)
print(info.features.dtype)
print(info.features['image'].shape)
print(info.features['image'].dtype)
{'image': (28, 28, 1), 'label': ()}
{'image': tf.uint8, 'label': tf.int64}
(28, 28, 1)
<dtype: 'uint8'>

تقسیم ابرداده (به عنوان مثال تقسیم نام، تعداد نمونه،...)

به tfds.core.SplitDict دسترسی پیدا کنید:

print(info.splits)
{'test': <SplitInfo num_examples=10000, num_shards=1>, 'train': <SplitInfo num_examples=60000, num_shards=1>}

تقسیمات موجود:

print(list(info.splits.keys()))
['test', 'train']

دریافت اطلاعات در مورد تقسیم فردی:

print(info.splits['train'].num_examples)
print(info.splits['train'].filenames)
print(info.splits['train'].num_shards)
60000
['gs://tensorflow-datasets/datasets/mnist/3.0.1/mnist-train.tfrecord-00000-of-00001']
1

همچنین با subsplit API کار می کند:

print(info.splits['train[15%:75%]'].num_examples)
print(info.splits['train[15%:75%]'].file_instructions)
36000
[FileInstruction(filename='gs://tensorflow-datasets/datasets/mnist/3.0.1/mnist-train.tfrecord-00000-of-00001', skip=9000, take=36000, num_examples=36000)]

عیب یابی

دانلود دستی (اگر دانلود نشد)

اگر دانلود به دلایلی انجام نشد (مثلاً آفلاین،...). همیشه می‌توانید خودتان داده‌ها را به‌صورت دستی دانلود کنید و در manual_dir (به‌طور پیش‌فرض ~/tensorflow_datasets/download/manual/ .

برای اینکه بفهمید کدام آدرس های اینترنتی را باید دانلود کنید، به این موارد نگاه کنید:

رفع NonMatchingChecksumError

TFDS با اعتبارسنجی چک‌جمع‌های آدرس‌های اینترنتی دانلود شده، جبرگرایی را تضمین می‌کند. اگر NonMatchingChecksumError مطرح شود، ممکن است نشان دهد:

  • ممکن است وب سایت از کار افتاده باشد (مثلاً 503 status code ). لطفا آدرس اینترنتی را بررسی کنید.
  • برای نشانی‌های وب Google Drive، بعداً دوباره امتحان کنید زیرا گاهی اوقات وقتی افراد زیادی به همان URL دسترسی دارند، Drive بارگیری‌ها را رد می‌کند. اشکال را ببینید
  • فایل های مجموعه داده های اصلی ممکن است به روز شده باشند. در این مورد، سازنده داده TFDS باید به روز شود. لطفاً یک مشکل جدید Github یا روابط عمومی باز کنید:
    • چک‌سام‌های جدید را با tfds build --register_checksums
    • در نهایت کد تولید مجموعه داده را به روز کنید.
    • مجموعه داده VERSION را به روز کنید
    • به روز رسانی مجموعه داده RELEASE_NOTES : چه چیزی باعث شد که جمع های چک تغییر کنند؟ آیا چند نمونه تغییر کرده است؟
    • مطمئن شوید که مجموعه داده همچنان قابل ساخت است.
    • برای ما روابط عمومی بفرستید

نقل قول

اگر از tensorflow-datasets برای مقاله استفاده می‌کنید، لطفاً استناد زیر را علاوه بر هر نقل قولی که مختص مجموعه داده‌های مورد استفاده است (که در کاتالوگ مجموعه داده‌ها یافت می‌شود) اضافه کنید.

@misc{TFDS,
  title = { {TensorFlow Datasets}, A collection of ready-to-use datasets},
  howpublished = {\url{https://www.tensorflow.org/datasets} },
}