TensorFlow Quantum is a library for hybrid quantum-classical machine learning.

# A hybrid quantum-classical model.
model = tf.keras.Sequential([
    # Quantum circuit data comes in inside of tensors.
    tf.keras.Input(shape=(), dtype=tf.dtypes.string),

    # Parametrized Quantum Circuit (PQC) provides output
    # data from the input circuits run on a quantum computer.
    tfq.layers.PQC(my_circuit, [cirq.Z(q1), cirq.X(q0)]),

    # Output data from quantum computer passed through model.

TensorFlow Quantum (TFQ) is a quantum machine learning library for rapid prototyping of hybrid quantum-classical ML models. Research in quantum algorithms and applications can leverage Google’s quantum computing frameworks, all from within TensorFlow.

TensorFlow Quantum focuses on quantum data and building hybrid quantum-classical models. It integrates quantum computing algorithms and logic designed in Cirq, and provides quantum computing primitives compatible with existing TensorFlow APIs, along with high-performance quantum circuit simulators. Read more in the TensorFlow Quantum white paper.

Start with the overview, then run the notebook tutorials.