TensorFlow 1 version | View source on GitHub |
Base neural network module class.
tf.Module(
name=None
)
A module is a named container for tf.Variable
s, other tf.Module
s and
functions which apply to user input. For example a dense layer in a neural
network might be implemented as a tf.Module
:
class Dense(tf.Module):
def __init__(self, input_dim, output_size, name=None):
super(Dense, self).__init__(name=name)
self.w = tf.Variable(
tf.random.normal([input_dim, output_size]), name='w')
self.b = tf.Variable(tf.zeros([output_size]), name='b')
def __call__(self, x):
y = tf.matmul(x, self.w) + self.b
return tf.nn.relu(y)
You can use the Dense layer as you would expect:
d = Dense(input_dim=3, output_size=2)
d(tf.ones([1, 3]))
<tf.Tensor: shape=(1, 2), dtype=float32, numpy=..., dtype=float32)>
By subclassing tf.Module
instead of object
any tf.Variable
or
tf.Module
instances assigned to object properties can be collected using
the variables
, trainable_variables
or submodules
property:
d.variables
(<tf.Variable 'b:0' shape=(2,) dtype=float32, numpy=...,
dtype=float32)>,
<tf.Variable 'w:0' shape=(3, 2) dtype=float32, numpy=..., dtype=float32)>)
Subclasses of tf.Module
can also take advantage of the _flatten
method
which can be used to implement tracking of any other types.
All tf.Module
classes have an associated tf.name_scope
which can be used
to group operations in TensorBoard and create hierarchies for variable names
which can help with debugging. We suggest using the name scope when creating
nested submodules/parameters or for forward methods whose graph you might want
to inspect in TensorBoard. You can enter the name scope explicitly using
with self.name_scope:
or you can annotate methods (apart from __init__
)
with @tf.Module.with_name_scope
.
class MLP(tf.Module):
def __init__(self, input_size, sizes, name=None):
super(MLP, self).__init__(name=name)
self.layers = []
with self.name_scope:
for size in sizes:
self.layers.append(Dense(input_dim=input_size, output_size=size))
input_size = size
@tf.Module.with_name_scope
def __call__(self, x):
for layer in self.layers:
x = layer(x)
return x
module = MLP(input_size=5, sizes=[5, 5])
module.variables
(<tf.Variable 'mlp/b:0' shape=(5,) dtype=float32, numpy=..., dtype=float32)>,
<tf.Variable 'mlp/w:0' shape=(5, 5) dtype=float32, numpy=...,
dtype=float32)>,
<tf.Variable 'mlp/b:0' shape=(5,) dtype=float32, numpy=..., dtype=float32)>,
<tf.Variable 'mlp/w:0' shape=(5, 5) dtype=float32, numpy=...,
dtype=float32)>)
Attributes | |
---|---|
name
|
Returns the name of this module as passed or determined in the ctor. |
name_scope
|
Returns a tf.name_scope instance for this class.
|
submodules
|
Sequence of all sub-modules.
Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).
|
trainable_variables
|
Sequence of trainable variables owned by this module and its submodules. |
variables
|
Sequence of variables owned by this module and its submodules. |
Methods
with_name_scope
@classmethod
with_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):
@tf.Module.with_name_scope
def __call__(self, x):
if not hasattr(self, 'w'):
self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
return tf.matmul(x, self.w)
Using the above module would produce tf.Variable
s and tf.Tensor
s whose
names included the module name:
mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>
Args | |
---|---|
method
|
The method to wrap. |
Returns | |
---|---|
The original method wrapped such that it enters the module's name scope. |