# tensorflow:: ops:: FractionalMaxPool:: Attrs

``` #include <nn_ops.h> ```

Optional attribute setters for FractionalMaxPool .

## Summary

### Public attributes

``` deterministic_ = false ```
``` bool ```
``` overlapping_ = false ```
``` bool ```
``` pseudo_random_ = false ```
``` bool ```
``` seed2_ = 0 ```
``` int64 ```
``` seed_ = 0 ```
``` int64 ```

### Public functions

``` Deterministic (bool x) ```
``` TF_MUST_USE_RESULT Attrs ```
When set to True, a fixed pooling region will be used when iterating over a FractionalMaxPool node in the computation graph.
``` Overlapping (bool x) ```
``` TF_MUST_USE_RESULT Attrs ```
When set to True, it means when pooling, the values at the boundary of adjacent pooling cells are used by both cells.
``` PseudoRandom (bool x) ```
``` TF_MUST_USE_RESULT Attrs ```
When set to True, generates the pooling sequence in a pseudorandom fashion, otherwise, in a random fashion.
``` Seed (int64 x) ```
``` TF_MUST_USE_RESULT Attrs ```
If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed.
``` Seed2 (int64 x) ```
``` TF_MUST_USE_RESULT Attrs ```
An second seed to avoid seed collision.

## Public attributes

### deterministic_

`bool tensorflow::ops::FractionalMaxPool::Attrs::deterministic_ = false`

### overlapping_

`bool tensorflow::ops::FractionalMaxPool::Attrs::overlapping_ = false`

### pseudo_random_

`bool tensorflow::ops::FractionalMaxPool::Attrs::pseudo_random_ = false`

### seed2_

`int64 tensorflow::ops::FractionalMaxPool::Attrs::seed2_ = 0`

### seed_

`int64 tensorflow::ops::FractionalMaxPool::Attrs::seed_ = 0`

## Public functions

### Deterministic

```TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::Deterministic(
bool x
)```

When set to True, a fixed pooling region will be used when iterating over a FractionalMaxPool node in the computation graph.

Mainly used in unit test to make FractionalMaxPool deterministic.

Defaults to false

### Overlapping

```TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::Overlapping(
bool x
)```

When set to True, it means when pooling, the values at the boundary of adjacent pooling cells are used by both cells.

For example:

``` index 0 1 2 3 4 ```

``` value 20 5 16 3 7 ```

If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. The result would be [20, 16] for fractional max pooling.

Defaults to false

### PseudoRandom

```TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::PseudoRandom(
bool x
)```

When set to True, generates the pooling sequence in a pseudorandom fashion, otherwise, in a random fashion.

Check paper Benjamin Graham, Fractional Max-Pooling for difference between pseudorandom and random.

Defaults to false

### Seed

```TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::Seed(
int64 x
)```

If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed.

Otherwise, it is seeded by a random seed.

Defaults to 0

### Seed2

```TF_MUST_USE_RESULT Attrs tensorflow::ops::FractionalMaxPool::Attrs::Seed2(
int64 x
)```

An second seed to avoid seed collision.

Defaults to 0

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]