MatrixDiagV2

パブリック最終クラスMatrixDiagV2

指定されたバッチ対角値を持つバッチ対角テンソルを返します。

行列の `k[0]` 番目から `k[1]` 番目の対角として `diagonal` の内容を含むテンソルを返し、それ以外はすべて `padding` で埋め込まれます。 `num_rows` と `num_cols` は、出力の最も内側の行列の次元を指定します。両方が指定されていない場合、この操作は最も内側の行列が正方形であると仮定し、そのサイズを `k` と `diagonal` の最も内側の次元から推測します。これらのうち 1 つだけが指定されている場合、この操作は、指定されていない値が他の基準に基づいて可能な最小値であると想定します。

「対角線」の「r」次元を「[I, J, ..., L, M, N]」とします。対角線が 1 つだけ与えられた場合 (`k` は整数または `k[0])、出力テンソルはランク `r+1` で形状 `[I, J, ..., L, M, num_rows, num_cols]` になります。 == k[1]`)。それ以外の場合は、ランク `r` の形状 `[I, J, ..., L, num_rows, num_cols]` を持ちます。

'diagonal' の 2 番目に内側の寸法には 2 つの意味があります。 `k` がスカラーまたは `k[0] == k[1]` の場合、`M` はバッチ サイズ [I, J, ..., M] の一部であり、出力テンソルは次のようになります。

output[i, j, ..., l, m, n]
   = diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper
     padding_value                             ; otherwise
 
それ以外の場合、`M` は同じバッチ内の行列の対角数 (`M = k[1]-k[0]+1`) として扱われ、出力テンソルは次のようになります。
output[i, j, ..., l, m, n]
   = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
     padding_value                                     ; otherwise
 
ここで、「d = n - m」、「diag_index = k[1] - d」、および「index_in_diag = n - max(d, 0)」です。

例えば:

# The main diagonal.
 diagonal = np.array([[1, 2, 3, 4],            # Input shape: (2, 4)
                      [5, 6, 7, 8]])
 tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0],  # Output shape: (2, 4, 4)
                                [0, 2, 0, 0],
                                [0, 0, 3, 0],
                                [0, 0, 0, 4]],
                               [[5, 0, 0, 0],
                                [0, 6, 0, 0],
                                [0, 0, 7, 0],
                                [0, 0, 0, 8]]]
 
 # A superdiagonal (per batch).
 diagonal = np.array([[1, 2, 3],  # Input shape: (2, 3)
                      [4, 5, 6]])
 tf.matrix_diag(diagonal, k = 1)
   ==> [[[0, 1, 0, 0],  # Output shape: (2, 4, 4)
         [0, 0, 2, 0],
         [0, 0, 0, 3],
         [0, 0, 0, 0]],
        [[0, 4, 0, 0],
         [0, 0, 5, 0],
         [0, 0, 0, 6],
         [0, 0, 0, 0]]]
 
 # A band of diagonals.
 diagonals = np.array([[[1, 2, 3],  # Input shape: (2, 2, 3)
                        [4, 5, 0]],
                       [[6, 7, 9],
                        [9, 1, 0]]])
 tf.matrix_diag(diagonals, k = (-1, 0))
   ==> [[[1, 0, 0],  # Output shape: (2, 3, 3)
         [4, 2, 0],
         [0, 5, 3]],
        [[6, 0, 0],
         [9, 7, 0],
         [0, 1, 9]]]
 
 # Rectangular matrix.
 diagonal = np.array([1, 2])  # Input shape: (2)
 tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)
   ==> [[0, 0, 0, 0],  # Output shape: (3, 4)
        [1, 0, 0, 0],
        [0, 2, 0, 0]]
 
 # Rectangular matrix with inferred num_cols and padding_value = 9.
 tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9)
   ==> [[9, 9],  # Output shape: (3, 2)
        [1, 9],
        [9, 2]]
 

パブリックメソッド

出力<T>
asOutput ()
テンソルのシンボリック ハンドルを返します。
静的 <T> MatrixDiagV2 <T>
create (スコープscope、オペランド<T>dialog、オペランド<Integer>k、オペランド<Integer>numRows、オペランド<Integer>numCols、オペランド<T>paddingValue)
新しい MatrixDiagV2 操作をラップするクラスを作成するファクトリ メソッド。
出力<T>
出力()
`k` が整数または `k[0] == k[1]` の場合はランク `r+1` を持ち、それ以外の場合はランク `r` を持ちます。

継承されたメソッド

パブリックメソッド

public Output <T> asOutput ()

テンソルのシンボリック ハンドルを返します。

TensorFlow オペレーションへの入力は、別の TensorFlow オペレーションの出力です。このメソッドは、入力の計算を表すシンボリック ハンドルを取得するために使用されます。

public static MatrixDiagV2 <T> create (スコープスコープ、オペランド<T> 対角線、オペランド<整数> k、オペランド<整数> numRows、オペランド<整数> numCols、オペランド<T> paddingValue)

新しい MatrixDiagV2 操作をラップするクラスを作成するファクトリ メソッド。

パラメータ
範囲現在のスコープ
対角線ランク「r」(「r >= 1」)
k対角オフセット。正の値は上対角を意味し、0 は主対角を意味し、負の値は下対角を意味します。 「k」は、単一の整数 (単一の対角線の場合)、またはマトリックス バンドの下限と上限を指定する整数のペアにすることができます。 `k[0]` は `k[1]` より大きくてはなりません。
行数出力行列の行数。これが指定されていない場合、この操作は出力行列が正方行列であると想定し、k と 'diagonal' の最も内側の次元から行列のサイズを推測します。
列数出力行列の列数。これが指定されていない場合、この操作は出力行列が正方行列であると想定し、k と 'diagonal' の最も内側の次元から行列のサイズを推測します。
パディング値指定された対角バンドの外側の領域を埋める数値。デフォルトは 0 です。
返品
  • MatrixDiagV2 の新しいインスタンス

public出力<T>出力()

`k` が整数または `k[0] == k[1]` の場合はランク `r+1` を持ち、それ以外の場合はランク `r` を持ちます。