TensorFlow Hub is a library for reusable machine learning modules.

import tensorflow as tf
import tensorflow_hub as hub

with tf.Graph().as_default():
  module_url = "https://tfhub.dev/google/nnlm-en-dim128-with-normalization/1"
  embed = hub.Module(module_url)
  embeddings = embed(["A long sentence.", "single-word",
                      "http://example.com"])

  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    sess.run(tf.tables_initializer())

    print(sess.run(embeddings))
TensorFlow Hub is a library for the publication, discovery, and consumption of reusable parts of machine learning models. A module is a self-contained piece of a TensorFlow graph, along with its weights and assets, that can be reused across different tasks in a process known as transfer learning. Transfer learning can:
  • Train a model with a smaller dataset,
  • Improve generalization, and
  • Speed up training.