Operações
mhlo.abs (mhlo::AbsOp)
Operação de abdômen
Sintaxe:
operation ::= `mhlo.abs` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Executa operação abs elemento a elemento no tensor operand e produz um tensor result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs
Exemplo:
%result = mhlo.abs %operand : tensor<3xi32>
Características: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor classificado de inteiro sem sinal de 2/4/8/16/32/64 bits ou float de 4/6/8/16/32/64 bits ou tipo complexo com elementos float de 32/64 bits ou inteiro com sinal quantizado uniforme de 2/4/8/16/32 bits ou inteiro com sinal quantizado uniforme por eixo de 2/4/8/16/32 bits ou inteiro sem sinal quantizado uniforme de 2/4/8/16/32 bits ou valores inteiros sem sinal quantizados uniformes por eixo de 2/4/8/16/32 bits |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor classificado de inteiro sem sinal de 2/4/8/16/32/64 bits ou float de 4/6/8/16/32/64 bits ou inteiro com sinal quantizado uniforme de 2/4/8/16/32 bits ou inteiro com sinal quantizado uniforme por eixo de 2/4/8/16/32 bits ou inteiro sem sinal quantizado uniforme de 2/4/8/16/32 bits ou inteiro sem sinal quantizado uniforme por eixo de 2/4/8/16/32 bits |
mhlo.acos (mhlo::AcosOp)
Operação Acos
Sintaxe:
operation ::= `mhlo.acos` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Executa a operação acos elemento a elemento no tensor operand e produz um tensor result .
Exemplo:
%result = mhlo.acos %operand : tensor<2x2xf32>
Características: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor de tipo float de 4/6/8/16/32/64 bits ou complexo com valores de elementos float de 32/64 bits |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor de tipo float de 4/6/8/16/32/64 bits ou complexo com valores de elementos float de 32/64 bits |
mhlo.acosh (mhlo::AcoshOp)
Operação Acosh
Sintaxe:
operation ::= `mhlo.acosh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Executa a operação acosh elemento a elemento no tensor operand e produz um tensor result .
Exemplo:
%result = mhlo.acosh %operand : tensor<2x2xf32>
Características: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor de tipo float de 4/6/8/16/32/64 bits ou complexo com valores de elementos float de 32/64 bits |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor de tipo float de 4/6/8/16/32/64 bits ou complexo com valores de elementos float de 32/64 bits |
mhlo.add (mhlo::AddOp)
Adicionar operação
Sintaxe:
operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Executa a adição elemento a elemento de dois tensores lhs e rhs e produz um tensor result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add
Exemplo:
%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>
Características: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
| Operando | Descrição |
|---|---|
lhs | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
rhs | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
mhlo.add_dependency (mhlo::AddDependencyOp)
Operação AddDependency
Sintaxe:
operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)
Esta operação é privada do compilador XLA, portanto ainda não possui uma especificação.
Informalmente, esta operação utiliza dois operandos: um operando de dados e um token. A saída da operação é o operando de dados. Quando usada com AfterAll, esta operação permite ordenar operações sem efeitos colaterais (aquelas que não produzem valores de token).
Exemplo:
%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>
Traços: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou tensor classificado de valores inteiros quantizados por eixo ou token ou token hlo estável |
token | token ou token stablehlo |
Resultados:
| Resultado | Descrição |
|---|---|
output | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou tensor classificado de valores inteiros quantizados por eixo ou token ou token hlo estável |
mhlo.after_all (mhlo::AfterAllOp)
Operação AfterAll
Sintaxe:
operation ::= `mhlo.after_all` $inputs attr-dict
`:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))
Garante que as operações que produzem as inputs sejam executadas antes de quaisquer operações que dependam do result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Exemplo:
%result = mhlo.after_all %input0, %input1 : !mhlo.token
Traços: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
| Operando | Descrição |
|---|---|
inputs | variável de token |
Resultados:
| Resultado | Descrição |
|---|---|
result | símbolo |
mhlo.all_gather (mhlo::AllGatherOp)
Operação AllGather
Dentro de cada grupo de processos na grade de processos, concatena os valores do tensor de operando de cada processo ao longo all_gather_dim e produz um tensor de resultado. O computation é aplicado separadamente para cada operando em operands , produzindo um resultado por operando.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather
Exemplo:
%result = "mhlo.all_gather"(%operand) {
all_gather_dim = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
// use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>
Características: SameOperandsAndResultElementType
Atributos:
| Atributo | Tipo MLIR | Descrição |
|---|---|---|
all_gather_dim | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits cujo valor não é negativo |
replica_groups | ::mlir::AtributoDeElementosIntDensos | Atributo de elementos inteiros sem sinal de 64 bits |
channel_handle | ::mlir::mhlo::Atributo do Cabo do Canal | dois inteiros de 64 bits 'handle' e 'type' |
use_global_device_ids | ::mlir::Atributo da Unidade | atributo de unidade |
Operandos:
| Operando | Descrição |
|---|---|
operands | variádico de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | variádico de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
mhlo.all_reduce (mhlo::AllReduceOp)
Operação AllReduce
Dentro de cada grupo de processos na grade de processos, aplica-se um computation de função de redução aos valores de um tensor de operando de cada processo e produz-se um tensor de resultado. O computation é aplicado separadamente para cada operando em operands , produzindo um resultado por operando.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Exemplo:
%result = "mhlo.all_reduce"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg1, %arg2 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>
Características: InferTensorType , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Atributos:
| Atributo | Tipo MLIR | Descrição |
|---|---|---|
replica_groups | ::mlir::AtributoDeElementosIntDensos | Atributo de elementos inteiros sem sinal de 64 bits |
channel_handle | ::mlir::mhlo::Atributo do Cabo do Canal | dois inteiros de 64 bits 'handle' e 'type' |
use_global_device_ids | ::mlir::Atributo da Unidade | atributo de unidade |
Operandos:
| Operando | Descrição |
|---|---|
operands | variádico de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | variádico de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
mhlo.all_to_all (mhlo::AllToAllOp)
Operação AllToAll
Dentro de cada grupo de processos na grade de processos, divide os valores do tensor do operand ao longo split_dimension em partes, espalha as partes divididas entre os processos, concatena as partes dispersas ao longo concat_dimension e produz um tensor result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all
Exemplo:
%result = "mhlo.all_to_all"(%operand) {
split_dimension = 1 : i64,
concat_dimension = 0 : i64,
split_count = 2 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>
Características: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsElementType , SameOperandsShape , SameVariadicOperandSize
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
| Atributo | Tipo MLIR | Descrição |
|---|---|---|
split_dimension | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits cujo valor não é negativo |
concat_dimension | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits cujo valor não é negativo |
split_count | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits cujo valor é positivo |
replica_groups | ::mlir::AtributoDeElementosIntDensos | Atributo de elementos inteiros sem sinal de 64 bits |
channel_handle | ::mlir::mhlo::Atributo do Cabo do Canal | dois inteiros de 64 bits 'handle' e 'type' |
Operandos:
| Operando | Descrição |
|---|---|
operand | variádico de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | variádico de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
mhlo.and (mhlo::AndOp)
E operação
Sintaxe:
operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Executa AND elemento a elemento de dois tensores lhs e rhs e produz um tensor result
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and
Exemplo:
%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>
Características: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
| Operando | Descrição |
|---|---|
lhs | tensor classificado de valores bool ou inteiros de 2/4/8/16/32/64 bits |
rhs | tensor classificado de valores bool ou inteiros de 2/4/8/16/32/64 bits |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
mhlo.asin (mhlo::AsinOp)
Operação Asin
Sintaxe:
operation ::= `mhlo.asin` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Executa uma operação asin elemento a elemento no tensor operand e produz um tensor result .
Exemplo:
%result = mhlo.asin %operand : tensor<2x2xf32>
Características: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor de tipo float de 4/6/8/16/32/64 bits ou complexo com valores de elementos float de 32/64 bits |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor de tipo float de 4/6/8/16/32/64 bits ou complexo com valores de elementos float de 32/64 bits |
mhlo.asinh (mhlo::AsinhOp)
Operação Asinh
Sintaxe:
operation ::= `mhlo.asinh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Executa uma operação asinh elemento a elemento no tensor operand e produz um tensor result .
Exemplo:
%result = mhlo.asinh %operand : tensor<2x2xf32>
Características: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor de tipo float de 4/6/8/16/32/64 bits ou complexo com valores de elementos float de 32/64 bits |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor de tipo float de 4/6/8/16/32/64 bits ou complexo com valores de elementos float de 32/64 bits |
mhlo.async_done (mhlo::AsyncDoneOp)
Operação AsyncDone
Esta operação é privada do compilador XLA, portanto ainda não possui uma especificação.
Informalmente, esta operação bloqueia até o final de uma computação assíncrona. Ela retorna o resultado final da computação assíncrona.
Consulte a documentação do AsyncStart para obter mais informações.
Interfaces: InferTypeOpInterface
Operandos:
| Operando | Descrição |
|---|---|
bundle | async_bundle com qualquer combinação de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo ou valores de token ou token stablehlo |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | variádico de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou valores inteiros quantizados por eixo ou token ou token stablehlo ou tupla aninhada com qualquer combinação de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou memref de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou tensor classificado de inteiro por eixo valores quantizados ou valores de token |
mhlo.async_start (mhlo::AsyncStartOp)
Operação AsyncStart
Esta operação é privada do compilador XLA, portanto ainda não possui uma especificação.
Informalmente, essa operação inicia uma computação assíncrona.
Isso é usado quando há funções que contêm esperas assíncronas (como DMAs) e computação on-thread. Por exemplo, uma função pode consistir em uma computação, uma DMA, outra computação, uma segunda DMA e uma computação final. Isso seria representado como um async_start seguido por um async_update e um async_done. O async_start faria a primeira computação on-thread e então iniciaria a DMA. O async_update esperaria a DMA ser concluída, caso ainda não tivesse sido concluída, então executaria a segunda computação na função e iniciaria a segunda DMA. Finalmente, o async_done esperaria por esta última DMA e então executaria a última computação que precisa ser executada on-thread e retornaria o resultado dessa computação final.
operands são passados diretamente para a computação. called_computation é a função que será executada de forma assíncrona. execution_thread é o nome da thread na qual ela será executada. A thread principal é chamada de "main". Todas as threads têm nomes.
Isso retorna todo o estado necessário entre operações assíncronas. Após a atribuição do buffer, os valores retornados representam o espaço necessário para armazenar a entrada, os resultados e quaisquer blocos de anotações necessários ou editados pela operação assíncrona.
Atributos:
| Atributo | Tipo MLIR | Descrição |
|---|---|---|
called_computation | ::mlir::Atributo de Referência de Símbolo Plano | atributo de referência de símbolo plano |
execution_thread | ::mlir::StringAttr | atributo de string |
Operandos:
| Operando | Descrição |
|---|---|
inputs | variádico de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou valores inteiros quantizados por eixo ou token ou token stablehlo ou tupla aninhada com qualquer combinação de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou memref de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou tensor classificado de inteiro por eixo valores quantizados ou valores de token |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | async_bundle com qualquer combinação de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo ou valores de token ou token stablehlo |
mhlo.async_update (mhlo::AsyncUpdateOp)
Operação AsyncUpdate
Esta operação é privada do compilador XLA, portanto ainda não possui uma especificação.
Informalmente, esta operação bloqueia uma computação assíncrona até que haja uma barreira de sincronização. Isso retorna bundle após a operação.
Consulte a documentação do AsyncStart para obter mais informações.
Interfaces: InferTypeOpInterface
Operandos:
| Operando | Descrição |
|---|---|
bundle | async_bundle com qualquer combinação de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo ou valores de token ou token stablehlo |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | async_bundle com qualquer combinação de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo ou valores de token ou token stablehlo |
mhlo.atan2 (mhlo::Atan2Op)
Operação Atan2
Sintaxe:
operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Executa a operação atan2 elemento a elemento nos tensores lhs e rhs e produz um tensor result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2
Exemplo:
%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>
Características: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
| Operando | Descrição |
|---|---|
lhs | tensor classificado de tipo float ou complexo de 4/6/8/16/32/64 bits com elementos float de 32/64 bits ou valores inteiros quantizados por tensor |
rhs | tensor classificado de tipo float ou complexo de 4/6/8/16/32/64 bits com elementos float de 32/64 bits ou valores inteiros quantizados por tensor |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor classificado de tipo float ou complexo de 4/6/8/16/32/64 bits com elementos float de 32/64 bits ou valores inteiros quantizados por tensor |
mhlo.atanh (mhlo::AtanhOp)
Operação Atanh
Sintaxe:
operation ::= `mhlo.atanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Executa a operação atanh elemento a elemento no tensor operand e produz um tensor result .
Exemplo:
%result = mhlo.atanh %operand : tensor<2x2xf32>
Características: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor de tipo float de 4/6/8/16/32/64 bits ou complexo com valores de elementos float de 32/64 bits |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor de tipo float de 4/6/8/16/32/64 bits ou complexo com valores de elementos float de 32/64 bits |
mhlo.batch_norm_grad (mhlo::BatchNormGradOp)
Operação BatchNormGrad
Calcula gradientes de várias entradas de BatchNormTrainingOp retropropagando de grad_output e produz tensores grad_operand , grad_scale e grad_offset .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad
Exemplo:
%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Características: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
| Atributo | Tipo MLIR | Descrição |
|---|---|---|
epsilon | ::mlir::AtributoFloat | Atributo float de 32 bits |
feature_index | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits cujo valor não é negativo |
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor classificado de valores float de 4/6/8/16/32/64 bits |
scale | Tensor 1D de valores float de 4/6/8/16/32/64 bits |
mean | Tensor 1D de valores float de 4/6/8/16/32/64 bits |
variance | Tensor 1D de valores float de 4/6/8/16/32/64 bits |
grad_output | tensor classificado de valores float de 4/6/8/16/32/64 bits |
Resultados:
| Resultado | Descrição |
|---|---|
grad_operand | tensor classificado de valores float de 4/6/8/16/32/64 bits |
grad_scale | Tensor 1D de valores float de 4/6/8/16/32/64 bits |
grad_offset | Tensor 1D de valores float de 4/6/8/16/32/64 bits |
mhlo.batch_norm_inference (mhlo::BatchNormInferenceOp)
Operação BatchNormInference
Normaliza o tensor operand em todas as dimensões, exceto na dimensão feature_index , e produz um tensor result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference
Exemplo:
%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>
Características: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
| Atributo | Tipo MLIR | Descrição |
|---|---|---|
epsilon | ::mlir::AtributoFloat | Atributo float de 32 bits |
feature_index | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits cujo valor não é negativo |
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor classificado de valores float de 4/6/8/16/32/64 bits |
scale | Tensor 1D de valores float de 4/6/8/16/32/64 bits |
offset | Tensor 1D de valores float de 4/6/8/16/32/64 bits |
mean | Tensor 1D de valores float de 4/6/8/16/32/64 bits |
variance | Tensor 1D de valores float de 4/6/8/16/32/64 bits |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor classificado de valores float de 4/6/8/16/32/64 bits |
mhlo.batch_norm_training (mhlo::BatchNormTrainingOp)
Operação BatchNormTraining
Calcula a média e a variância entre dimensões de lote e espaciais e normaliza o tensor operand para cada recurso na dimensão feature_index e produz tensores output , batch_mean e batch_var .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training
Exemplo:
%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Características: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
| Atributo | Tipo MLIR | Descrição |
|---|---|---|
epsilon | ::mlir::AtributoFloat | Atributo float de 32 bits |
feature_index | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits cujo valor não é negativo |
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor classificado de valores float de 4/6/8/16/32/64 bits |
scale | Tensor 1D de valores float de 4/6/8/16/32/64 bits |
offset | Tensor 1D de valores float de 4/6/8/16/32/64 bits |
Resultados:
| Resultado | Descrição |
|---|---|
output | tensor classificado de valores float de 4/6/8/16/32/64 bits |
batch_mean | Tensor 1D de valores float de 4/6/8/16/32/64 bits |
batch_var | Tensor 1D de valores float de 4/6/8/16/32/64 bits |
mhlo.bitcast (mhlo::BitcastOp)
Operação Bitcast
Sintaxe:
operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)
Esta operação é privada do compilador XLA, portanto ainda não possui uma especificação.
Informalmente, essa operação altera a forma da entrada de forma que o arranjo físico dos elementos permanece inalterado.
Esta operação precisa de informações de layout para dar sentido ao "arranjo físico dos elementos", e o suporte ao layout no MHLO está atualmente em andamento.
Exemplo:
%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>
Traços: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
mhlo.bitcast_convert (mhlo::BitcastConvertOp)
Operação BitcastConvert
Sintaxe:
operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)
Executa uma operação de bitcast no tensor operand e produz um tensor result onde os bits de todo o tensor operand são reinterpretados usando o tipo do tensor result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert
Exemplo:
%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>
Traços: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
mhlo.broadcast (mhlo::BroadcastOp)
Operação de transmissão
Esta operação está saindo do StableHLO, portanto não está incluída na especificação: https://github.com/openxla/stablehlo/issues/3
Informalmente, esta operação faz a mesma coisa que a transmissão do XLA: https://www.tensorflow.org/xla/operation_semantics#broadcast
Exemplo:
%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>
Características: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
| Atributo | Tipo MLIR | Descrição |
|---|---|---|
broadcast_sizes | ::mlir::AtributoDeElementosIntDensos | Atributo de elementos inteiros sem sinal de 64 bits |
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
mhlo.broadcast_in_dim (mhlo::BroadcastInDimOp)
Operação BroadcastInDim
Expande as dimensões e/ou classificação de um tensor de entrada duplicando os dados no tensor operand e produz um tensor result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim
Exemplo:
%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>
Características: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
| Atributo | Tipo MLIR | Descrição |
|---|---|---|
broadcast_dimensions | ::mlir::AtributoDeElementosIntDensos | Atributo de elementos inteiros sem sinal de 64 bits |
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | tensor de dimensão limitada única ou de formato estático de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou valores inteiros quantizados por eixo |
mhlo.case (mhlo::CaseOp)
Operação de caso
Produz a saída da execução de exatamente uma function de branches dependendo do valor do index .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case
Exemplo:
%result0, %result1 = "mhlo.case"(%index) ({
mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)
Características: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferTypeOpInterface
Operandos:
| Operando | Descrição |
|---|---|
index | tensor de valores inteiros sem sinal de 32 bits |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | variádico de tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou tensor classificado de valores inteiros quantizados por eixo ou token |
mhlo.cbrt (mhlo::CbrtOp)
Operação Cbrt
Sintaxe:
operation ::= `mhlo.cbrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Executa operação de raiz cúbica elemento a elemento no tensor operand e produz um tensor result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt
Exemplo:
%result = mhlo.cbrt %operand : tensor<4xf32>
Características: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
| Atributo | Tipo MLIR | Descrição |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | A precisão solicitada para operações unárias. |
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor classificado de tipo float ou complexo de 4/6/8/16/32/64 bits com elementos float de 32/64 bits ou valores inteiros quantizados por tensor |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor classificado de tipo float ou complexo de 4/6/8/16/32/64 bits com elementos float de 32/64 bits ou valores inteiros quantizados por tensor |
mhlo.ceil (mhlo::CeilOp)
Operação de teto
Sintaxe:
operation ::= `mhlo.ceil` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Executa o teto do tensor operand elemento a elemento e produz um tensor result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceil
Exemplo:
%result = mhlo.ceil %operand : tensor<5xf32>
Características: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor classificado de valores inteiros quantizados por tensor ou float de 4/6/8/16/32/64 bits |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor classificado de valores inteiros quantizados por tensor ou float de 4/6/8/16/32/64 bits |
mhlo.cholesky (mhlo::CholeskyOp)
Operação Cholesky
Calcula a decomposição de Cholesky de um lote de matrizes.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky
Exemplo:
%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>
Características: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
| Atributo | Tipo MLIR | Descrição |
|---|---|---|
lower | ::mlir::BoolAttr | atributo bool |
Operandos:
| Operando | Descrição |
|---|---|
a | tensor classificado de tipo float de 4/6/8/16/32/64 bits ou complexo com valores de elementos float de 32/64 bits |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | tensor classificado de tipo float de 4/6/8/16/32/64 bits ou complexo com valores de elementos float de 32/64 bits |
mhlo.clamp (mhlo::ClampOp)
Operação de fixação
Sintaxe:
operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
`:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))
Fixa cada elemento do tensor operand entre um valor mínimo e máximo e produz um tensor result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp
Exemplo:
%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>
Características: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
| Operando | Descrição |
|---|---|
min | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
operand | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
max | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
mhlo.collective_broadcast (mhlo::Opção_de_transmissão_coletiva)
Operação de transmissão coletiva
Dentro de cada grupo de processos na grade de processos, envie o valor do tensor do operand do processo de origem para os processos de destino e produza um tensor result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast
Exemplo:
%result = "mhlo.collective_broadcast"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>
Características: CompatibleOperandsAndResultType
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Atributos:
| Atributo | Tipo MLIR | Descrição |
|---|---|---|
replica_groups | ::mlir::AtributoDeElementosIntDensos | Atributo de elementos inteiros sem sinal de 64 bits |
channel_handle | ::mlir::mhlo::Atributo do Cabo do Canal | dois inteiros de 64 bits 'handle' e 'type' |
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
mhlo.collective_permute (mhlo::OpçãoDePermutaColetiva)
Operação CollectivePermute
Dentro de cada grupo de processos na grade de processos, envia o valor do tensor do operand do processo de origem para o processo de destino e produz um tensor result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute
Exemplo:
%result = "mhlo.collective_permute"(%operand) {
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>
Características: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
| Atributo | Tipo MLIR | Descrição |
|---|---|---|
source_target_pairs | ::mlir::AtributoDeElementosIntDensos | Atributo de elementos inteiros sem sinal de 64 bits |
channel_handle | ::mlir::mhlo::Atributo do Cabo do Canal | dois inteiros de 64 bits 'handle' e 'type' |
Operandos:
| Operando | Descrição |
|---|---|
operand | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
mhlo.compare (mhlo::CompareOp)
Comparar operação
Sintaxe:
operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
attr-dict `:` functional-type(operands, results)
Executa comparação elemento a elemento dos tensores lhs e rhs de acordo com comparison_direction e compare_type e produz um tensor result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compare
Exemplo:
%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>
Características: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape , SameOperandsElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
| Atributo | Tipo MLIR | Descrição |
|---|---|---|
comparison_direction | ::mlir::mhlo::ComparisonDirectionAttr | Qual operação de comparação executar. |
compare_type | ::mlir::mhlo::ComparisonTypeAttr | Qual tipo de comparação usar. |
Operandos:
| Operando | Descrição |
|---|---|
lhs | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
rhs | tensor classificado de 4/6/8/16/32/64 bits float ou bool ou 2/4/8/16/32/64 bits inteiro ou tipo complexo com elementos float de 32/64 bits ou valores inteiros quantizados por tensor ou inteiros quantizados por eixo |
Resultados:
| Resultado | Descrição |
|---|---|
| «sem nome» | tensor classificado de valores bool |
mhlo.complex (mhlo::ComplexOp)
Operação complexa
Sintaxe:
operation ::= `mhlo.complex` operands attr-dict
`:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))
Executa a conversão elemento a elemento para um valor complexo a partir de um par de valores reais e imaginários, lhs e rhs , e produz um tensor result .
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex
Exemplo:
%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>
Características: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape , SameOperandsElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 32/64-bit float values |
rhs | ranked tensor of 32/64-bit float values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of complex type with 32/64-bit float elements values |
mhlo.composite (mhlo::CompositeOp)
Operação composta
Sintaxe:
operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)
Encapsulates an operation made up (composed) of other StableHLO operations, taking inputs and composite_attributes and producing results . The semantics of the op are implemented by the decomposition attribute. The composite op can be replaced with its decomposition without changing program semantics. In cases where inlining the decomposition does not provide the same op semantics, prefer using custom_call .
The version field (defaults to 0 ) is used to denote when a composite's semantics change.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composite
Exemplo:
%results = mhlo.composite "my.op" %arg0, %arg1 {
decomposition = @my_op,
composite_attributes = { my_attribute = "my_value" },
version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>
Interfaces: SymbolUserOpInterface
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
name | ::mlir::StringAttr | string attribute |
composite_attributes | ::mlir::DictionaryAttr | dictionary of named attribute values |
decomposition | ::mlir::FlatSymbolRefAttr | flat symbol reference attribute |
version | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
| Operando | Descrição |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.concatenate (mhlo::ConcatenateOp)
Concatenate operation
Concatenates a variadic number of tensors in inputs along dimension dimension in the same order as the given arguments and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatenate
Exemplo:
%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Operando | Descrição |
|---|---|
val | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.constant (mhlo::ConstantOp)
Constant operation
Produces an output tensor from a constant value .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant
Exemplo:
%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , ConstantLike
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
value | ::mlir::ElementsAttr | constant vector/tensor attribute |
Resultados:
| Resultado | Descrição |
|---|---|
output | statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.convert (mhlo::ConvertOp)
Convert operation
Sintaxe:
operation ::= `mhlo.convert` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs an element-wise conversion from one element type to another on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert
Exemplo:
%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.convolution (mhlo::ConvolutionOp)
Operação de convolução
Sintaxe:
operation ::= `mhlo.convolution` `(`operands`)`
`dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
`window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
$lhs_dilation, $rhs_dilation,
$window_reversal) `}`
attr-dict `:` functional-type(operands, results)
Computes dot products between windows of lhs and slices of rhs and produces result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Exemplo:
%result = "mhlo.convolution"(%lhs, %rhs) {
window_strides = dense<4> : tensor<2xi64>,
padding = dense<0> : tensor<2x2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.copy (mhlo::CopyOp)
Copy operation
Sintaxe:
operation ::= `mhlo.copy` operands attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation a copy of operand . Depending on the metadata attached to the operation, it can behave quite differently from a no-op.
Exemplo:
%0 = mhlo.copy %arg0 : tensor<f32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
cross_program_prefetch_index | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.cosh (mhlo::CoshOp)
Cosh operation
Sintaxe:
operation ::= `mhlo.cosh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise cosh operation on operand tensor and produces a result tensor.
Exemplo:
%result = mhlo.cosh %operand : tensor<2x2xf32>
Traits: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Operands:
| Operando | Descrição |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.cosine (mhlo::CosineOp)
Cosine operation
Sintaxe:
operation ::= `mhlo.cosine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise cosine operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine
Exemplo:
%result = mhlo.cosine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.count_leading_zeros (mhlo::ClzOp)
Clz operation
Sintaxe:
operation ::= `mhlo.count_leading_zeros` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of leading zero bits in the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros
Exemplo:
%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.create_token (mhlo::CreateTokenOp)
CreateToken operation
Sintaxe:
operation ::= `mhlo.create_token` attr-dict `:` type(results)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AfterAllOp with 0 inputs: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Exemplo:
%output = mhlo.create_token : !mhlo.token
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Resultados:
| Resultado | Descrição |
|---|---|
output | símbolo |
mhlo.cross-replica-sum (mhlo::CrossReplicaSumOp)
CrossReplicaSum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AllReduceOp with channel_id = 0 , use_global_device_ids = false and computation implementing addition: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Exemplo:
%result = "mhlo.cross-replica-sum"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.custom_call (mhlo::CustomCallOp)
CustomCall operation
Sintaxe:
operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
attr-dict `:` functional-type(operands, results)
Encapsulates an implementation-defined operation call_target_name that takes inputs and called_computations and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call
Exemplo:
%results = "mhlo.custom_call"(%input0) {
call_target_name = "foo",
has_side_effect = false,
backend_config = "bar",
api_version = 1 : i32,
called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>
A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.
If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.
Depending on the API version there are two ways to pass extra bits of static
information to the external function:
1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
dictionary attribute, that will be encoded according to the custom call
calling convention and passed to the external function as the attributes
argument. External code is expected to use declarative bindings (see
`xla/runtime/custom_call.h`) to decode them at run time. These custom
calls are only supported if XLA uses XLA runtime.
2. For previous API versions it is the user responsibility to encode extra
bits of static information as a string `backend_config` attribute, and
decode it at run time.
Interfaces: MemoryEffectOpInterface
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
call_target_name | ::mlir::StringAttr | string attribute |
has_side_effect | ::mlir::BoolAttr | bool attribute |
backend_config | ::mlir::Attribute | string attribute or dictionary of named attribute values |
api_version | ::mlir::mhlo::CustomCallApiVersionAttr | Custom call API version |
called_computations | ::mlir::ArrayAttr | flat symbol ref array attribute |
custom_call_schedule | ::mlir::mhlo::CustomCallScheduleAttr | Specifies the desired schedule for the custom-call. |
operand_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
result_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of CustomCall |
Operands:
| Operando | Descrição |
|---|---|
inputs | variadic of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token or nested tuple with any combination of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | variadic of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token or nested tuple with any combination of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token values |
mhlo.divide (mhlo::DivOp)
Div operation
Sintaxe:
operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise division of dividend lhs and divisor rhs tensors and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide
Exemplo:
%result = mhlo.divide %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.domain (mhlo::DomainOp)
Domain operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, these operations are used to group instructions with the same DomainMetadata property. ShardingMetadata is the main use case today to group instructions on the same device. Domain instructions provide two major benefits:
- Prevent unintentionally optimizing instructions across domains.
- Automatically assign the metadata of the instructions created in the domain. Without domain instructions, each HLO optimization pass would have to check and propagate the metadata, which would be easy to miss and also adds complexity to the compiler. Since domain instructions connect two different domains, each domain instruction is associated with two DomainMetadata -- one on the operand side and one on the user side of the domain.
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
kind | ::mlir::mhlo::DomainKindAttr | Kind of domain metatdata attached to an HLO domain. |
entry_metadata | ::mlir::StringAttr | string attribute |
exit_metadata | ::mlir::StringAttr | string attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.dot (mhlo::DotOp)
Dot operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as XLA's Dot: https://www.tensorflow.org/xla/operation_semantics#dot
Exemplo:
%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dot_general (mhlo::DotGeneralOp)
DotGeneral operation
Computes dot products between slices of lhs and slices of rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general
Exemplo:
%result = "mhlo.dot_general"(%lhs, %rhs) {
dot_dimension_numbers = #mhlo.dot<
lhs_batching_dimensions = [0],
rhs_batching_dimensions = [0],
lhs_contracting_dimensions = [2],
rhs_contracting_dimensions = [1]
>,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
algorithm | ::mlir::mhlo::DotAlgorithmAttr | Attribute that models the algorithm constraints to use for computing dot. |
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_broadcast_in_dim (mhlo::DynamicBroadcastInDimOp)
DynamicBroadcastInDim operation
This operation is functionally identical to broadcast_in_dim op, but the result shape is specified dynamically via output_dimensions .
It also accepts optional attributes to express static knowledge about the expanding behavior of dimensions. If not specified, all dimensions are assumed to be possibly expanding. The sets of dimensions that are known to be expanding and the set of dimensions that are known to be non-expanding must be disjoint and they must be a subset of the operand's dimensions.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim
Exemplo:
%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
broadcast_dimensions = array<i64: 2, 1>,
known_expanding_dimensions = array<i64: 0>,
known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_expanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_nonexpanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
output_dimensions | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_conv (mhlo::DynamicConvOp)
DynamicConv operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as ConvolutionOp except that padding is specified dynamically via d_padding : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Exemplo:
%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
window_strides = dense<4> : tensor<2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
d_padding | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_gather (mhlo::DynamicGatherOp)
DynamicGather operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as GatherOp except that slice_sizes are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Exemplo:
%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
dimension_numbers = #mhlo.gather<
offset_dims = [2, 3],
collapsed_slice_dims = [0],
start_index_map = [0, 2],
index_vector_dim = 2>,
indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit integer values |
slice_sizes | statically shaped 1-dimensional integer tensor of 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_iota (mhlo::DynamicIotaOp)
DynamicIota operation
This operation is functionally identical to iota op, but the result shape is specified dynamically via output_shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota
Exemplo:
%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Operando | Descrição |
|---|---|
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_pad (mhlo::DynamicPadOp)
DynamicPad operation
Sintaxe:
operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)
Dynamically Pads the operand , with amount of padding added at low-end/high-end/interior is passed through input tensors.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
padding_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
edge_padding_low | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
edge_padding_high | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
interior_padding | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_reshape (mhlo::DynamicReshapeOp)
DynamicReshape operation
Sintaxe:
operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)
This operation is functionally identical to reshape op, but the result shape is specified dynamically via output_shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape
Exemplo:
%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_slice (mhlo::DynamicSliceOp)
DynamicSlice operation
Extracts a slice from the operand using dynamically-computed starting indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice
Exemplo:
%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
: (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_update_slice (mhlo::DynamicUpdateSliceOp)
DynamicUpdateSlice operation
Sintaxe:
operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)
Produces a result tensor which is equal to the operand tensor except that the slice starting at start_indices is updated with the values in update .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice
Exemplo:
%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
: (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
update | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.einsum (mhlo::EinsumOp)
Einsum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum
Exemplo:
%result = "mhlo.einsum"(%lhs, %rhs) {
einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
einsum_config | ::mlir::StringAttr | string attribute |
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.erf (mhlo::ErfOp)
Erf operation
Sintaxe:
operation ::= `mhlo.erf` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise erf operation on operand tensor and produces a result tensor.
Exemplo:
%result = mhlo.erf %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.exponential (mhlo::ExpOp)
Exp operation
Sintaxe:
operation ::= `mhlo.exponential` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential
Exemplo:
%result = mhlo.exponential %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.exponential_minus_one (mhlo::Expm1Op)
Expm1 operation
Sintaxe:
operation ::= `mhlo.exponential_minus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential minus one operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one
Exemplo:
%result = mhlo.exponential_minus_one %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.fft (mhlo::FftOp)
Fft operation
Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft
Exemplo:
%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
fft_type | ::mlir::mhlo::FftTypeAttr | XLA fast fourier transform type. |
fft_length | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.floor (mhlo::FloorOp)
Floor operation
Sintaxe:
operation ::= `mhlo.floor` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise floor of operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor
Exemplo:
%result = mhlo.floor %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values |
mhlo.fusion (mhlo::FusionOp)
Fusion operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
fusion_kind | ::mlir::mhlo::FusionKindAttr | fusion kind |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of Fusion |
Operands:
| Operando | Descrição |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Resultados:
| Resultado | Descrição |
|---|---|
results | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.gather (mhlo::GatherOp)
Gather operation
Gathers slices from operand tensor from offsets specified in start_indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Exemplo:
%result = "mhlo.gather"(%operand, %start_indices) {
dimension_numbers = #stablehlo.gather<
offset_dims = [3, 4],
collapsed_slice_dims = [1],
operand_batching_dims = [0],
start_indices_batching_dims = [1],
start_index_map = [2, 1],
index_vector_dim = 3>,
slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.get_dimension_size (mhlo::GetDimensionSizeOp)
GetDimensionSize operation
Produces the size of the given dimension of the operand .
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size
Exemplo:
%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | tensor of 32-bit signless integer values |
mhlo.get_tuple_element (mhlo::GetTupleElementOp)
GetTupleElement operation
Sintaxe:
operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)
Extracts element at index position of the operand tuple and produces a result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element
Exemplo:
%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
index | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
| Operando | Descrição |
|---|---|
operand | nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.if (mhlo::IfOp)
If operation
Produces the output from executing exactly one branch from true_branch or false_branch depending on the value of pred .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if
Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor
Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferTypeOpInterface
Operands:
| Operando | Descrição |
|---|---|
pred | ranked tensor of bool values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.imag (mhlo::ImagOp)
Imag operation
Sintaxe:
operation ::= `mhlo.imag` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the imaginary part, element-wise, from the operand and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag
Exemplo:
%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.infeed (mhlo::InfeedOp)
Infeed operation
Reads data from the infeed and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed
Exemplo:
%results:2 = "mhlo.infeed"(%token) {
infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
infeed_config | ::mlir::StringAttr | string attribute |
layout | ::mlir::ArrayAttr | array attribute |
Operands:
| Operando | Descrição |
|---|---|
token | símbolo |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token |
mhlo.iota (mhlo::IotaOp)
Iota operation
Fills an output tensor with values in increasing order starting from zero along the iota_dimension dimension.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota
Exemplo:
%output = mhlo.iota dim = 0 : tensor<4x5xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Resultados:
| Resultado | Descrição |
|---|---|
output | statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.is_finite (mhlo::IsFiniteOp)
IsFinite operation
Sintaxe:
operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)
Performs element-wise check whether the value in x is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite
Exemplo:
%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
x | ranked tensor of 4/6/8/16/32/64-bit float values |
Resultados:
| Resultado | Descrição |
|---|---|
y | ranked tensor of bool values |
mhlo.log (mhlo::LogOp)
Log operation
Sintaxe:
operation ::= `mhlo.log` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log
Exemplo:
%result = mhlo.log %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.log_plus_one (mhlo::Log1pOp)
Log1p operation
Sintaxe:
operation ::= `mhlo.log_plus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm plus one operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one
Exemplo:
%result = mhlo.log_plus_one %operand : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.logistic (mhlo::LogisticOp)
Logistic operation
Sintaxe:
operation ::= `mhlo.logistic` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logistic operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic
Exemplo:
%result = mhlo.logistic %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.map (mhlo::MapOp)
Map operation
Applies a map function computation to inputs along the dimensions and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map
Exemplo:
%result = "mhlo.map"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operando | Descrição |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.maximum (mhlo::MaxOp)
Max operation
Sintaxe:
operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise max operation on tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum
Exemplo:
%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.minimum (mhlo::MinOp)
Min operation
Sintaxe:
operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise min operation on tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum
Exemplo:
%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.minimum_broadcast_shapes (mhlo::MinimumBroadcastShapesOp)
Minimizes the rank of two or more shapes to be broadcasted
Sintaxe:
operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)
Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i corresponds to output i .
The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.
The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.
Here is an example with two input shapes:
mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
[1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]
The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
shapes | variadic of 1D tensor of index values |
Resultados:
| Resultado | Descrição |
|---|---|
results | variadic of 1D tensor of index values |
mhlo.multiply (mhlo::MulOp)
Mul operation
Sintaxe:
operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise product of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply
Exemplo:
%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.negate (mhlo::NegOp)
Neg operation
Sintaxe:
operation ::= `mhlo.negate` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise negation of operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate
Exemplo:
%result = mhlo.negate %operand : tensor<2x3xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.not (mhlo::NotOp)
Not operation
Sintaxe:
operation ::= `mhlo.not` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise NOT of tensor operand of type integer and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not
Exemplo:
%result = mhlo.not %operand : tensor<5x3x1xi1>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
mhlo.optimization_barrier (mhlo::OptimizationBarrierOp)
OptimizationBarrier operation
Sintaxe:
operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?
Ensures that the operations that produce the operand are executed before any operations that depend on the result and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result = operand .
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier
Exemplo:
%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>
Traits: AlwaysSpeculatableImplTrait , HLO_PairwiseSameOperandAndResultType
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Resultados:
| Resultado | Descrição |
|---|---|
result | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.or (mhlo::OrOp)
Or operation
Sintaxe:
operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise OR of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or
Exemplo:
%result = mhlo.or %lhs, %rhs : tensor<2xi1>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.outfeed (mhlo::OutfeedOp)
Outfeed operation
Writes inputs to the outfeed and produces a result token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed
Exemplo:
%result = "mhlo.outfeed"(%input0, %token) {
outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
outfeed_config | ::mlir::StringAttr | string attribute |
Operands:
| Operando | Descrição |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
token | símbolo |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | símbolo |
mhlo.pad (mhlo::PadOp)
Pad operation
Expands operand by padding around the tensor as well as between the elements of the tensor with the given padding_value .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad
Exemplo:
%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
: (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
edge_padding_low | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
edge_padding_high | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
interior_padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
padding_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.partition_id (mhlo::PartitionIdOp)
PartitionId operation
Sintaxe:
operation ::= `mhlo.partition_id` attr-dict `:` type(results)
Produces partition_id of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id
Exemplo:
%result = mhlo.partition_id : tensor<ui32>
Interfaces: InferTypeOpInterface
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 32-bit unsigned integer values |
mhlo.popcnt (mhlo::PopulationCountOp)
PopulationCount operation
Sintaxe:
operation ::= `mhlo.popcnt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of bits set in the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt
Exemplo:
%result = mhlo.popcnt %operand : tensor<4xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.power (mhlo::PowOp)
Pow operation
Sintaxe:
operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise exponentiation of lhs tensor by rhs tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power
Exemplo:
%result = mhlo.power %lhs, %rhs : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.ragged_dot (mhlo::RaggedDotOp)
Ragged matrix multiplication over a single ragged dimension
This operation takes three tensor args---lhs, rhs, and group_sizes---and a "ragged_dot_dimension_numbers" attribute. Like dot_general, the lhs and rhs are allowed arbitrary batch and contracting dimensions. Additionally, the lhs is required to have one ragged dimension, and the rhs may have at most one group dimension. The op has three modes, depending on the kind of the lhs ragged dimension.
In mode 1, the shape-signature is [b,m,k], [g,b,k,n], [b,g] -> [b,m,n] . Here the ragged dimension is an lhs non-contracting dimension ( m ). The dimensions b and k represent batch and contracting dimensions respectively. The rhs is required to have a group dimension ( g ).
In mode 2, the shape-signature is [b,m,k], [b,k,n], [b,g] -> [g,b,m,n] . Here the ragged dimension is an lhs/rhs contracting dimension ( k ).
In mode 3, the shape-signature is [b,m,k], [b,k,n], [g] -> [b,m,n] . Here the ragged dimension is an lhs/rhs batch dimension ( b ).
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
ragged_dot_dimension_numbers | ::mlir::mhlo::RaggedDotDimensionNumbersAttr | Attribute that models the dimension information for ragged dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
group_sizes | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.real (mhlo::RealOp)
Real operation
Sintaxe:
operation ::= `mhlo.real` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the real part, element-wise, from the operand and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real
Exemplo:
%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.real_dynamic_slice (mhlo::RealDynamicSliceOp)
RealDynamicSlice operation
Sintaxe:
operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as SliceOp except that start_indices , limit_indices and strides are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Exemplo:
%result = mhlo.real_dynamic_slice %operand,
%start_indices, %limit_indices, %strides
: (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
limit_indices | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
strides | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.recv (mhlo::RecvOp)
Recv operation
Receives data from a channel with channel_id and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv
Exemplo:
%results:2 = "mhlo.recv"(%token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
is_host_transfer = false,
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
source_target_pairs | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operando | Descrição |
|---|---|
token | símbolo |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token |
mhlo.reduce (mhlo::ReduceOp)
Reduce operation
Applies a reduction function body to inputs and init_values along the dimensions and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce
Exemplo:
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operando | Descrição |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_values | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.reduce_precision (mhlo::ReducePrecisionOp)
ReducePrecision operation
Sintaxe:
operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))
Performs element-wise conversion of operand to another floating-point type that uses exponent_bits and mantissa_bits and back to the original floating-point type and produces an output tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision
Exemplo:
%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
exponent_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
mantissa_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Resultados:
| Resultado | Descrição |
|---|---|
output | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.reduce_scatter (mhlo::ReduceScatterOp)
ReduceScatter operation
Within each process group in the process grid, performs reduction, using computations , over the values of the operand tensor from each process, splits the reduction result along scatter_dimension into parts, and scatters the split parts between the processes to produce the result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter
Exemplo:
%result = "mhlo.reduce_scatter"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg0, %arg1 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
scatter_dimension = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
scatter_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
use_global_device_ids | ::mlir::UnitAttr | unit attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.reduce_window (mhlo::ReduceWindowOp)
ReduceWindow operation
Applies a reduction function body to windows of inputs and init_values and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window
Exemplo:
%result = "mhlo.reduce_window"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
window_dimensions = dense<[2, 1]> : tensor<2xi64>,
window_strides = dense<[4, 1]> : tensor<2xi64>,
base_dilations = dense<[2, 1]> : tensor<2xi64>,
window_dilations = dense<[3, 1]> : tensor<2xi64>,
padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
base_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operando | Descrição |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_values | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.remainder (mhlo::RemOp)
Rem operation
Sintaxe:
operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise remainder of dividend lhs and divisor rhs tensors and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder
Exemplo:
%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.replica_id (mhlo::ReplicaIdOp)
ReplicaId operation
Sintaxe:
operation ::= `mhlo.replica_id` attr-dict `:` type(results)
Produces replica_id of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id
Exemplo:
%result = mhlo.replica_id : tensor<ui32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 32-bit unsigned integer values |
mhlo.reshape (mhlo::ReshapeOp)
Reshape operation
Sintaxe:
operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)
Performs reshape of operand tensor to a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape
Exemplo:
%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>
Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | statically shaped or single bounded dimension tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.return (mhlo::ReturnOp)
_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425
Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.
Example:
```mlir
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
```_
Syntax:
```
operation ::= mhlo.return $results attr-dict ( : type($results)^)?
Traits: `AlwaysSpeculatableImplTrait`, `Terminator`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
### `mhlo.reverse` (mhlo::ReverseOp)
_Reverse operation_
Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.
See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>
Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.rng (mhlo::RngOp)
Rng operation
Generates random numbers using the rng_distribution algorithm and produces a result tensor of a given shape shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng
Exemplo:
%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>
Traits: InferTensorType
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
rng_distribution | ::mlir::mhlo::RngDistributionAttr | XLA PRNG distribution to be used. |
Operands:
| Operando | Descrição |
|---|---|
a | 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
b | 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
mhlo.rng_bit_generator (mhlo::RngBitGeneratorOp)
RngBitGenerator operation
Returns an output filled with uniform random data and an updated output state output_state given an initial state initial_state using the pseudorandom number generator algorithm rng_algorithm .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator
Exemplo:
%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
rng_algorithm | ::mlir::mhlo::RngAlgorithmAttr | XLA PRNG algorithm to be used. |
Operands:
| Operando | Descrição |
|---|---|
initial_state | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
Resultados:
| Resultado | Descrição |
|---|---|
output_state | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
output | statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
mhlo.round_nearest_afz (mhlo::RoundOp)
Round operation
Sintaxe:
operation ::= `mhlo.round_nearest_afz` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz
Exemplo:
%result = mhlo.round_nearest_afz %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.round_nearest_even (mhlo::RoundNearestEvenOp)
RoundNearestEven operation
Sintaxe:
operation ::= `mhlo.round_nearest_even` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even
Exemplo:
%result = mhlo.round_nearest_even %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.rsqrt (mhlo::RsqrtOp)
Rsqrt operation
Sintaxe:
operation ::= `mhlo.rsqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise reciprocal square root operation on operand tensor and produces a result tensor, implementing the rSqrt operation from the IEEE-754 specification.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt
Exemplo:
%result = mhlo.rsqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.scatter (mhlo::ScatterOp)
Scatter operation
Produces results tensors which are equal to inputs tensors except that several slices specified by scatter_indices are updated with the values updates using update_computation .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter
Exemplo:
%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
scatter_dimension_numbers = #mhlo.scatter<
update_window_dims = [3, 4],
inserted_window_dims = [1],
input_batching_dims = [0],
scatter_indices_batching_dims = [1],
scatter_dims_to_operand_dims = [2, 1],
index_vector_dim = 3>,
indices_are_sorted = false,
unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>
Traits: RecursiveMemoryEffects , SameVariadicOperandSize
Interfaces: InferTypeOpInterface
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
scatter_dimension_numbers | ::mlir::mhlo::ScatterDimensionNumbersAttr | Attribute that models the dimension information for scatter |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
unique_indices | ::mlir::BoolAttr | bool attribute |
Operands:
| Operando | Descrição |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
scatter_indices | ranked tensor of integer or index values |
updates | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.select (mhlo::SelectOp)
Select operation
Sintaxe:
operation ::= `mhlo.select` operands attr-dict `:`
custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))
Produces a result tensor where each element is selected from on_true or on_false tensor based on the value of the corresponding element of pred .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select
Exemplo:
%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
pred | ranked tensor of bool values |
on_true | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
on_false | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.select_and_scatter (mhlo::SelectAndScatterOp)
SelectAndScatter operation
Scatters the values from the source tensor using scatter based on the outcome of reduce_window of the input tensor using select and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter
Exemplo:
%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GE>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
window_dimensions = dense<[3, 1]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>,
padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>
Traits: RecursiveMemoryEffects
Interfaces: InferTypeOpInterface
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
source | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.send (mhlo::SendOp)
Send operation
Sends inputs to a channel channel_id and produces a result token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send
Exemplo:
%result = "mhlo.send"(%operand, %token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
is_host_transfer = false,
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
source_target_pairs | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operando | Descrição |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
token | símbolo |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | símbolo |
mhlo.set_dimension_size (mhlo::SetDimensionSizeOp)
SetDimensionSize operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize
Exemplo:
%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
size | tensor of 32-bit signless integer values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.shift_left (mhlo::ShiftLeftOp)
ShiftLeft operation
Sintaxe:
operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise left-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left
Exemplo:
%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.shift_right_arithmetic (mhlo::ShiftRightArithmeticOp)
ShiftRightArithmetic operation
Sintaxe:
operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise arithmetic right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic
Exemplo:
%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.shift_right_logical (mhlo::ShiftRightLogicalOp)
ShiftRightLogical operation
Sintaxe:
operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise logical right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical
Exemplo:
%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.sign (mhlo::SignOp)
Sign operation
Sintaxe:
operation ::= `mhlo.sign` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Returns the sign of the operand element-wise and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign
Exemplo:
%result = mhlo.sign %operand : tensor<7xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.sine (mhlo::SineOp)
Sine operation
Sintaxe:
operation ::= `mhlo.sine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sine operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine
Exemplo:
%result = mhlo.sine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.sinh (mhlo::SinhOp)
Sinh operation
Sintaxe:
operation ::= `mhlo.sinh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sinh operation on operand tensor and produces a result tensor.
Exemplo:
%result = mhlo.sinh %operand : tensor<2x2xf32>
Traits: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Operands:
| Operando | Descrição |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Resultados:
| Resultado | Descrição |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.slice (mhlo::SliceOp)
Slice operation
Extracts a slice from the operand using statically-computed starting indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Exemplo:
%result = "mhlo.slice" (%operand) {
start_indices = dense<[1, 2]> : tensor<2xi64>,
limit_indices = dense<[3, 4]> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
start_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
limit_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.sort (mhlo::SortOp)
Sort operation
Sorts a variadic number of tensors in inputs together, according to a custom comparator , along the given dimension and produces a variadic number of tensors as results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort
Exemplo:
%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
%predicate = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
dimension = 0 : i64,
is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)
Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
is_stable | ::mlir::BoolAttr | bool attribute |
Operands:
| Operando | Descrição |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.sqrt (mhlo::SqrtOp)
Sqrt operation
Sintaxe:
operation ::= `mhlo.sqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise square root operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt
Exemplo:
%result = mhlo.sqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.stochastic_convert (mhlo::StochasticConvertOp)
StochasticConvert operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295
Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.
Traits: AlwaysSpeculatableImplTrait , Elementwise
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
random | ranked tensor of 2/4/8/16/32/64-bit unsigned integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.subtract (mhlo::SubtractOp)
Subtract operation
Sintaxe:
operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise subtraction of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract
Exemplo:
%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.tan (mhlo::TanOp)
Tan operation
Sintaxe:
operation ::= `mhlo.tan` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954
Informally, this operation returns Tan(operand) element-wise.
Exemplo:
%0 = mhlo.tan %arg0 : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.tanh (mhlo::TanhOp)
Tanh operation
Sintaxe:
operation ::= `mhlo.tanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise hyperbolic tangent operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh
Exemplo:
%result = mhlo.tanh %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.topk (mhlo::TopKOp)
TopK operation
Sintaxe:
operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
type($operand) `->` `(`type($values)`,` type($indices)`)`
Returns top k values and their indices, along the last dimension of the operand if largest=true or the bottom k values if largest=false .
See: https://www.tensorflow.org/xla/operation_semantics#top-k
Exemplo:
%values, %indices = mhlo.topk(%operand, k=5, largest=true)
: tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)
Traits: InferTensorType , RecursiveMemoryEffects
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
k | ::mlir::IntegerAttr | 64-bit signless integer attribute |
largest | ::mlir::BoolAttr | bool attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
values | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
indices | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.torch_index_select (mhlo::TorchIndexSelectOp)
TorchIndexSelect operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html
The batch_dims attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.
Exemplo:
%result = "mhlo.torch_index_select"(%operand, %index) {
dim = 2 : i64,
batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
dim | ::mlir::IntegerAttr | 64-bit signless integer attribute |
batch_dims | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
index | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.trace (mhlo::TraceOp)
Trace operation
Sintaxe:
operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604
It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.
Exemplo:
mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
tag | ::mlir::StringAttr | string attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.transpose (mhlo::TransposeOp)
Transpose operation
Permutes the dimensions of operand tensor using permutation and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose
Exemplo:
%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>
Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
permutation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.triangular_solve (mhlo::TriangularSolveOp)
TriangularSolve operation
Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve
Exemplo:
%result = "mhlo.triangular_solve"(%a, %b) {
left_side = true,
lower = true,
unit_diagonal = false,
transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
left_side | ::mlir::BoolAttr | bool attribute |
lower | ::mlir::BoolAttr | bool attribute |
unit_diagonal | ::mlir::BoolAttr | bool attribute |
transpose_a | ::mlir::mhlo::TransposeAttr | Transpose options |
Operands:
| Operando | Descrição |
|---|---|
a | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
b | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.tuple (mhlo::TupleOp)
Tuple operation
Sintaxe:
operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))
Produces a result tuple from values val .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple
Exemplo:
%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
val | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.uniform_dequantize (mhlo::UniformDequantizeOp)
UniformDequantize operation
Sintaxe:
operation ::= `mhlo.uniform_dequantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of quantized tensor operand to a floating-point tensor result according to the quantization parameters defined by the operand type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize
Exemplo:
%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of per-tensor integer quantized or per-axis integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.uniform_quantize (mhlo::UniformQuantizeOp)
UniformQuantize operation
Sintaxe:
operation ::= `mhlo.uniform_quantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of floating-point tensor or quantized tensor operand to a quantized tensor result according to the quantization parameters defined by the result type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize
Exemplo:
%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of per-tensor integer quantized or per-axis integer quantized values |
mhlo.while (mhlo::WhileOp)
While operation
Produces the output from executing body function 0 or more times while the cond function outputs true .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while
Exemplo:
%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction LT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)
Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferTypeOpInterface , OpAsmOpInterface
Operands:
| Operando | Descrição |
|---|---|
operand | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.xla.rng_get_and_update_state (mhlo::XlaRngGetAndUpdateStateOp)
XlaRngGetAndUpdateState operation
Sintaxe:
operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.
The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.
Interfaces: InferTypeOpInterface
Atributos:
| Atributo | MLIR Type | Descrição |
|---|---|---|
delta | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Resultados:
| Resultado | Descrição |
|---|---|
| «unnamed» | statically shaped tensor of 64-bit unsigned integer values |
mhlo.xor (mhlo::XorOp)
Xor operation
Sintaxe:
operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise XOR of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor
Exemplo:
%result = mhlo.xor %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operando | Descrição |
|---|---|
lhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Resultados:
| Resultado | Descrição |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Atributos
ArgResultAliasAttr
Attribute that models the alias relationship of entry function argument
This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex . The argTupleIndices and resultTupleIndices are used to index into nested tuples in operand and result respectively. If isMustAlias is true then the operand-result pair must alias.
This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1 may alias 0-th result.
func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
mhlo.result_alias<result_index = [2], ...>}
) -> tensor<2xf32>, tensor<3xf32> {
// function body ...
}
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| argTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensão |
| resultIndex | int64_t | |
| resultTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensão |
| isMustAlias | bool |
ChannelHandleAttr
Two 64-bit integers 'handle' and 'type'
Sintaxe:
#mhlo.channel_handle<
int64_t, # handle
int64_t # type
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| lidar | int64_t | |
| tipo | int64_t |
ComparisonDirectionAttr
Which comparison operation to perform.
Sintaxe:
#mhlo.comparison_direction<
::mlir::mhlo::ComparisonDirection # value
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| valor | ::mlir::mhlo::ComparisonDirection | an enum of type ComparisonDirection |
ComparisonTypeAttr
Which comparison type to use.
Sintaxe:
#mhlo.comparison_type<
::mlir::mhlo::ComparisonType # value
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| valor | ::mlir::mhlo::ComparisonType | an enum of type ComparisonType |
ConvDimensionNumbersAttr
Structure of dimension information for conv op
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| inputBatchDimension | int64_t | |
| inputFeatureDimension | int64_t | |
| inputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
| kernelInputFeatureDimension | int64_t | |
| kernelOutputFeatureDimension | int64_t | |
| kernelSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
| outputBatchDimension | int64_t | |
| outputFeatureDimension | int64_t | |
| outputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
CrossProgramPrefetchAttr
Argument that is prefetched from another program
Sintaxe:
#mhlo.cross_program_prefetch<
int64_t, # parameter
::llvm::ArrayRef<int64_t>, # indices
std::optional<int64_t> # offset
>
This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr , parameter tells us which argument of the main function of the module is prefetched, and indices is a shape index telling us what subshape of that argument is prefetched.
A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices is the shape achieved after indexing by each element of indices in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>> is tensor<i32> .
An empty value for indices means the whole shape is prefetched.
Por exemplo,
module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
}
func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
%2 = "mhlo.async_done"(%1) {called_computation=@copy}
return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
}
}
The parameter = 0 tells us that the async copy of the 0 th parameter is a cross_program_prefetch , while the index of [0] tells us that the 0 th element of the tuple is prefetched while the other element of the tuple is not.
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| parâmetro | int64_t | |
| índices | ::llvm::ArrayRef<int64_t> | Dimensão |
| desvio | std::optional<int64_t> |
CustomCallScheduleAttr
Specifies the desired schedule for the custom-call.
Sintaxe:
#mhlo.custom_call_schedule<
::mlir::mhlo::CustomCallSchedule # value
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| valor | ::mlir::mhlo::CustomCallSchedule | an enum of type CustomCallSchedule |
DequantizeModeAttr
_Dequantization mode. Only MIN COMBINED is supported.
Sintaxe:
#mhlo.dequantize_mode<
::mlir::mhlo::DequantizeMode # value
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| valor | ::mlir::mhlo::DequantizeMode | an enum of type DequantizeMode |
DomainKindAttr
Kind of domain metatdata attached to an HLO domain.
Sintaxe:
#mhlo.kind<
::mlir::mhlo::DomainKind # value
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| valor | ::mlir::mhlo::DomainKind | an enum of type DomainKind |
DotAlgorithmAttr
Attribute that models the algorithm constraints to use for computing dot.
Sintaxe:
#mhlo.dot_algorithm<
Type, # lhsPrecisionType
Type, # rhsPrecisionType
Type, # accumulationType
int64_t, # lhsComponentCount
int64_t, # rhsComponentCount
int64_t, # numPrimitiveOperations
bool # allowImpreciseAccumulation
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| lhsPrecisionType | Type | |
| rhsPrecisionType | Type | |
| accumulationType | Type | |
| lhsComponentCount | int64_t | |
| rhsComponentCount | int64_t | |
| numPrimitiveOperations | int64_t | |
| allowImpreciseAccumulation | bool |
DotDimensionNumbersAttr
Attribute that models the dimension information for dot.
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| lhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
| rhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
| lhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
| rhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
FftTypeAttr
XLA fast fourier transform type.
Sintaxe:
#mhlo.fft_type<
::mlir::mhlo::FftType # value
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| valor | ::mlir::mhlo::FftType | an enum of type FftType |
FusionKindAttr
Fusion kind
Sintaxe:
#mhlo.fusion_kind<
::mlir::mhlo::FusionKind # value
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| valor | ::mlir::mhlo::FusionKind | an enum of type FusionKind |
GatherDimensionNumbersAttr
Attribute that models the dimension information for gather
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| offsetDims | ::llvm::ArrayRef<int64_t> | Dimensão |
| collapsedSliceDims | ::llvm::ArrayRef<int64_t> | Dimensão |
| operandBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensão |
| startIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensão |
| startIndexMap | ::llvm::ArrayRef<int64_t> | Dimensão |
| indexVectorDim | int64_t |
OutputOperandAliasAttr
Attribute that models the alias relationship of output and operand of a CustomCall op
Sintaxe:
#mhlo.output_operand_alias<
::llvm::ArrayRef<int64_t>, # outputTupleIndices
int64_t, # operandIndex
::llvm::ArrayRef<int64_t> # operandTupleIndices
>
This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index . The output_tuple_indices and operand_tuple_indices are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.
See https://www.tensorflow.org/xla/aliasing
Example when used as array with in mhlo.custom-call:
%0 = "mhlo.custom_call"(%arg0, %arg1) {
// other attributes
output_operand_alias = [
#mhlo.output_operand_alias<output_tuple_indices = [0],
operand_index = 0,
operand_tuple_indices = [1]>
]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>
The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| outputTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensão |
| operandIndex | int64_t | |
| operandTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensão |
PrecisionAttr
XLA precision for an operand. Has backend specific meaning.
Sintaxe:
#mhlo.precision<
::mlir::mhlo::Precision # value
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| valor | ::mlir::mhlo::Precision | an enum of type Precision |
RaggedDotDimensionNumbersAttr
Attribute that models the dimension information for ragged dot.
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| dotDimensionNumbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
| lhsRaggedDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
| rhsGroupDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
ResultAccuracyAttr
The requested accuracy for unary ops.
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| atol | APFloat | |
| rtol | APFloat | |
| ulps | int64_t | |
| modo | ::mlir::mhlo::ResultAccuracyModeAttr | XLA result accuracy mode. |
ResultAccuracyModeAttr
XLA result accuracy mode.
Sintaxe:
#mhlo.result_accuracy_mode<
::mlir::mhlo::ResultAccuracyMode # value
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| valor | ::mlir::mhlo::ResultAccuracyMode | an enum of type ResultAccuracyMode |
RngAlgorithmAttr
XLA PRNG algorithm to be used.
Sintaxe:
#mhlo.rng_algorithm<
::mlir::mhlo::RngAlgorithm # value
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| valor | ::mlir::mhlo::RngAlgorithm | an enum of type RngAlgorithm |
RngDistributionAttr
XLA PRNG distribution to be used.
Sintaxe:
#mhlo.rng_distribution<
::mlir::mhlo::RngDistribution # value
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| valor | ::mlir::mhlo::RngDistribution | an enum of type RngDistribution |
ScatterDimensionNumbersAttr
Attribute that models the dimension information for scatter
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| updateWindowDims | ::llvm::ArrayRef<int64_t> | Dimensão |
| insertedWindowDims | ::llvm::ArrayRef<int64_t> | Dimensão |
| inputBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensão |
| scatterIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensão |
| scatterDimsToOperandDims | ::llvm::ArrayRef<int64_t> | Dimensão |
| indexVectorDim | int64_t |
TransposeAttr
Transpose options
Sintaxe:
#mhlo.transpose<
::mlir::mhlo::Transpose # value
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| valor | ::mlir::mhlo::Transpose | an enum of type Transpose |
TypeExtensionsAttr
Attribute that extends tensor type with MHLO type properties.
Sintaxe:
#mhlo.type_extensions<
::llvm::ArrayRef<int64_t> # bounds
>
This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding field of the tensor type.
See HLO_BoundedAttrInterface for documentation for bounds .
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| limites | ::llvm::ArrayRef<int64_t> |
Tipos
AsyncBundleType
Opaque collection of other types
Sintaxe:
!mhlo.async_bundle<
::llvm::ArrayRef<Type> # types
>
Parâmetros:
| Parâmetro | C++ type | Descrição |
|---|---|---|
| tipos | ::llvm::ArrayRef<Type> |
Enumerações
ComparisonDirection
Which comparison operation to perform.
Casos:
| Símbolo | Valor | Corda |
|---|---|---|
| EQ | 0 | EQ |
| NE | 1 | NE |
| GE | 2 | GE |
| GT | 3 | GT |
| LE | 4 | LE |
| Tenente | 5 | Tenente |
ComparisonType
Which comparison type to use.
Casos:
| Símbolo | Valor | Corda |
|---|---|---|
| NOTYPE | 0 | NOTYPE |
| FLUTUADOR | 1 | FLUTUADOR |
| TOTALORDER | 2 | TOTALORDER |
| ASSINADO | 3 | ASSINADO |
| NÃO ASSINADO | 4 | NÃO ASSINADO |
CustomCallApiVersion
Custom call API version
Casos:
| Símbolo | Valor | Corda |
|---|---|---|
| API_VERSION_UNSPECIFIED | 0 | API_VERSION_UNSPECIFIED |
| API_VERSION_ORIGINAL | 1 | API_VERSION_ORIGINAL |
| API_VERSION_STATUS_RETURNING | 2 | API_VERSION_STATUS_RETURNING |
| API_VERSION_STATUS_RETURNING_UNIFIED | 3 | API_VERSION_STATUS_RETURNING_UNIFIED |
| API_VERSION_TYPED_FFI | 4 | API_VERSION_TYPED_FFI |
CustomCallSchedule
Specifies the desired schedule for the custom-call.
Casos:
| Símbolo | Valor | Corda |
|---|---|---|
| NENHUM | 0 | NENHUM |
| MAIS RECENTE | 1 | MAIS RECENTE |
| MAIS ANTIGO | 2 | MAIS ANTIGO |
DequantizeMode
_Dequantization mode. Only MIN COMBINED is supported.
Casos:
| Símbolo | Valor | Corda |
|---|---|---|
| MIN_COMBINED | 0 | MIN_COMBINED |
DomainKind
Kind of domain metatdata attached to an HLO domain.
Casos:
| Símbolo | Valor | Corda |
|---|---|---|
| fragmentação | 0 | fragmentação |
FftType
XLA fast fourier transform type.
Casos:
| Símbolo | Valor | Corda |
|---|---|---|
| FFT | 0 | FFT |
| IFFT | 1 | IFFT |
| RFFT | 2 | RFFT |
| IRFFT | 3 | IRFFT |
FusionKind
Fusion kind
Casos:
| Símbolo | Valor | Corda |
|---|---|---|
| kLoop | 0 | kLoop |
| kInput | 1 | kInput |
| kOutput | 2 | kOutput |
| kCustom | 3 | kCustom |
Precisão
XLA precision for an operand. Has backend specific meaning.
Casos:
| Símbolo | Valor | Corda |
|---|---|---|
| PADRÃO | 0 | PADRÃO |
| ALTO | 1 | ALTO |
| MAIS ALTO | 2 | MAIS ALTO |
ResultAccuracyMode
XLA result accuracy mode.
Casos:
| Símbolo | Valor | Corda |
|---|---|---|
| PADRÃO | 0 | PADRÃO |
| MAIS ALTO | 1 | MAIS ALTO |
| TOLERÂNCIA | 2 | TOLERÂNCIA |
RngAlgorithm
XLA PRNG algorithm to be used.
Casos:
| Símbolo | Valor | Corda |
|---|---|---|
| PADRÃO | 0 | PADRÃO |
| THREE_FRY | 1 | THREE_FRY |
| PHILOX | 2 | PHILOX |
RngDistribution
XLA PRNG distribution to be used.
Casos:
| Símbolo | Valor | Corda |
|---|---|---|
| UNIFORME | 1 | UNIFORME |
| NORMAL | 2 | NORMAL |
Transpor
Transpose options
Casos:
| Símbolo | Valor | Corda |
|---|---|---|
| TRANSPOSE_INVALID | 0 | TRANSPOSE_INVALID |
| NO_TRANSPOSE | 1 | NO_TRANSPOSE |
| TRANSPOR | 2 | TRANSPOR |
| ADJOINT | 3 | ADJOINT |