Hai una domanda? Connettiti con la community al forum TensorFlow Visita il forum


Annotate a tf.keras model to be quantized.

This function does not actually quantize the model. It merely specifies that the model needs to be quantized. quantize_apply can then be used to quantize the model.

This function is intended to be used in conjunction with the quantize_annotate_layer API. Otherwise, it is simpler to use quantize_model.

Annotate a model while overriding the default behavior for a layer:

quantize_config = MyDenseQuantizeConfig()

model = quantize_annotate_model(
    layers.Dense(10, activation='relu', input_shape=(100,)),
        layers.Dense(2, activation='sigmoid'),

# The first Dense layer gets quantized with the default behavior,
# but the second layer uses `MyDenseQuantizeConfig` for quantization.
quantized_model = quantize_apply(model)

Note that this function removes the optimizer from the original model.

to_annotate tf.keras model which needs to be quantized.

New tf.keras model with each layer in the model wrapped with QuantizeAnnotate. The new model preserves weights from the original model.