Questa pagina è stata tradotta dall'API Cloud Translation.
Switch to English

Raggruppamento di pesi nell'esempio di Keras

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza sorgente su GitHub Scarica il quaderno

Panoramica

Benvenuti nell'esempio end-to-end per il raggruppamento dei pesi , parte del TensorFlow Model Optimization Toolkit.

Altre pagine

Per un'introduzione su cosa sia il raggruppamento dei pesi e per determinare se è necessario utilizzarlo (incluso ciò che è supportato), vedere la pagina di panoramica .

Per trovare rapidamente le API necessarie per il tuo caso d'uso (oltre al clustering completo di un modello con 16 cluster), consulta la guida completa .

Contenuti

Nel tutorial, dovrai:

  1. Allena un modello tf.keras per il set di dati MNIST da zero.
  2. Ottimizza il modello applicando l'API di raggruppamento dei pesi e controlla l'accuratezza.
  3. Crea un modello TF e TFLite 6 volte più piccolo dal clustering.
  4. Crea un modello TFLite 8 volte più piccolo combinando raggruppamento di pesi e quantizzazione post-allenamento.
  5. Guarda la persistenza dell'accuratezza da TF a TFLite.

Impostare

Puoi eseguire questo Jupyter Notebook nel tuo virtualenv o colab locale. Per i dettagli sull'impostazione delle dipendenze, consultare la guida all'installazione .

 pip install -q tensorflow-model-optimization
 import tensorflow as tf
from tensorflow import keras

import numpy as np
import tempfile
import zipfile
import os
 

Addestra un modello tf.keras per MNIST senza raggruppamento

 # Load MNIST dataset
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images  = test_images / 255.0

# Define the model architecture.
model = keras.Sequential([
    keras.layers.InputLayer(input_shape=(28, 28)),
    keras.layers.Reshape(target_shape=(28, 28, 1)),
    keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),
    keras.layers.MaxPooling2D(pool_size=(2, 2)),
    keras.layers.Flatten(),
    keras.layers.Dense(10)
])

# Train the digit classification model
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model.fit(
    train_images,
    train_labels,
    validation_split=0.1,
    epochs=10
)
 
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376/11490434 [==============================] - 0s 0us/step
Epoch 1/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.3352 - accuracy: 0.9039 - val_loss: 0.1543 - val_accuracy: 0.9575
Epoch 2/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.1535 - accuracy: 0.9559 - val_loss: 0.0948 - val_accuracy: 0.9745
Epoch 3/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.1003 - accuracy: 0.9715 - val_loss: 0.0750 - val_accuracy: 0.9788
Epoch 4/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0791 - accuracy: 0.9768 - val_loss: 0.0652 - val_accuracy: 0.9828
Epoch 5/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0669 - accuracy: 0.9803 - val_loss: 0.0663 - val_accuracy: 0.9807
Epoch 6/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0589 - accuracy: 0.9820 - val_loss: 0.0581 - val_accuracy: 0.9833
Epoch 7/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0528 - accuracy: 0.9840 - val_loss: 0.0584 - val_accuracy: 0.9832
Epoch 8/10
1688/1688 [==============================] - 8s 5ms/step - loss: 0.0479 - accuracy: 0.9854 - val_loss: 0.0560 - val_accuracy: 0.9838
Epoch 9/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0434 - accuracy: 0.9867 - val_loss: 0.0550 - val_accuracy: 0.9853
Epoch 10/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0393 - accuracy: 0.9880 - val_loss: 0.0571 - val_accuracy: 0.9845

<tensorflow.python.keras.callbacks.History at 0x7fd1a1e18668>

Valuta il modello di base e salvalo per un utilizzo successivo

 _, baseline_model_accuracy = model.evaluate(
    test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy)

_, keras_file = tempfile.mkstemp('.h5')
print('Saving model to: ', keras_file)
tf.keras.models.save_model(model, keras_file, include_optimizer=False)
 
Baseline test accuracy: 0.9805999994277954
Saving model to:  /tmp/tmpphs68ctq.h5

Ottimizza il modello pre-allenato con il clustering

Applicare l'API cluster_weights() a un intero modello pre-addestrato per dimostrare la sua efficacia nel ridurre le dimensioni del modello dopo aver applicato zip mantenendo l'accuratezza decente. Per sapere come bilanciare la precisione e il tasso di compressione per il tuo caso d'uso, fai riferimento all'esempio per livello nella guida completa .

Definire il modello e applicare l'API di clustering

Prima di passare il modello all'API di clustering, assicurarsi che sia stato addestrato e mostri una precisione accettabile.

 import tensorflow_model_optimization as tfmot

cluster_weights = tfmot.clustering.keras.cluster_weights
CentroidInitialization = tfmot.clustering.keras.CentroidInitialization

clustering_params = {
  'number_of_clusters': 16,
  'cluster_centroids_init': CentroidInitialization.LINEAR
}

# Cluster a whole model
clustered_model = cluster_weights(model, **clustering_params)

# Use smaller learning rate for fine-tuning clustered model
opt = tf.keras.optimizers.Adam(learning_rate=1e-5)

clustered_model.compile(
  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
  optimizer=opt,
  metrics=['accuracy'])

clustered_model.summary()
 
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
cluster_reshape (ClusterWeig (None, 28, 28, 1)         0         
_________________________________________________________________
cluster_conv2d (ClusterWeigh (None, 26, 26, 12)        136       
_________________________________________________________________
cluster_max_pooling2d (Clust (None, 13, 13, 12)        0         
_________________________________________________________________
cluster_flatten (ClusterWeig (None, 2028)              0         
_________________________________________________________________
cluster_dense (ClusterWeight (None, 10)                20306     
=================================================================
Total params: 20,442
Trainable params: 54
Non-trainable params: 20,388
_________________________________________________________________

Ottimizza il modello e valuta l'accuratezza rispetto alla baseline

Ottimizza il modello con clustering per 1 epoca.

 # Fine-tune model
clustered_model.fit(
  train_images,
  train_labels,
  batch_size=500,
  epochs=1,
  validation_split=0.1)
 
108/108 [==============================] - 2s 16ms/step - loss: 0.0535 - accuracy: 0.9821 - val_loss: 0.0692 - val_accuracy: 0.9803

<tensorflow.python.keras.callbacks.History at 0x7fd18437ee10>

Per questo esempio, si verifica una perdita minima dell'accuratezza del test dopo il raggruppamento, rispetto alla linea di base.

 _, clustered_model_accuracy = clustered_model.evaluate(
  test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy)
print('Clustered test accuracy:', clustered_model_accuracy)
 
Baseline test accuracy: 0.9805999994277954
Clustered test accuracy: 0.9753000140190125

Crea 6 modelli più piccoli dal clustering

Sia strip_clustering che l'applicazione di un algoritmo di compressione standard (ad es. Tramite gzip) sono necessari per vedere i vantaggi della compressione del clustering.

Innanzitutto, crea un modello comprimibile per TensorFlow. Qui, strip_clustering rimuove tutte le variabili (es. tf.Variable per la memorizzazione dei centroidi e degli indici del cluster) di cui il clustering ha bisogno solo durante l'allenamento, che altrimenti aggiungerebbe alla dimensione del modello durante l'inferenza.

 final_model = tfmot.clustering.keras.strip_clustering(clustered_model)

_, clustered_keras_file = tempfile.mkstemp('.h5')
print('Saving clustered model to: ', clustered_keras_file)
tf.keras.models.save_model(final_model, clustered_keras_file, 
                           include_optimizer=False)
 
Saving clustered model to:  /tmp/tmpfnmtfvf8.h5

Quindi, crea modelli comprimibili per TFLite. È possibile convertire il modello cluster in un formato eseguibile sul back-end di destinazione. TensorFlow Lite è un esempio che puoi utilizzare per distribuire su dispositivi mobili.

 clustered_tflite_file = '/tmp/clustered_mnist.tflite'
converter = tf.lite.TFLiteConverter.from_keras_model(final_model)
tflite_clustered_model = converter.convert()
with open(clustered_tflite_file, 'wb') as f:
  f.write(tflite_clustered_model)
print('Saved clustered TFLite model to:', clustered_tflite_file)
 
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.
INFO:tensorflow:Assets written to: /tmp/tmpe966h_56/assets
Saved clustered TFLite model to: /tmp/clustered_mnist.tflite

Definire una funzione di supporto per comprimere effettivamente i modelli tramite gzip e misurare le dimensioni zippate.

 def get_gzipped_model_size(file):
  # It returns the size of the gzipped model in bytes.
  import os
  import zipfile

  _, zipped_file = tempfile.mkstemp('.zip')
  with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
    f.write(file)

  return os.path.getsize(zipped_file)
 

Confronta e vedi che i modelli sono 6 volte più piccoli dal clustering

 print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped clustered Keras model: %.2f bytes" % (get_gzipped_model_size(clustered_keras_file)))
print("Size of gzipped clustered TFlite model: %.2f bytes" % (get_gzipped_model_size(clustered_tflite_file)))
 
Size of gzipped baseline Keras model: 78076.00 bytes
Size of gzipped clustered Keras model: 13362.00 bytes
Size of gzipped clustered TFlite model: 12982.00 bytes

Crea un modello TFLite 8 volte più piccolo combinando cluster di pesi e quantizzazione post-allenamento

È possibile applicare la quantizzazione post-training al modello cluster per ulteriori vantaggi.

 converter = tf.lite.TFLiteConverter.from_keras_model(final_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_quant_model = converter.convert()

_, quantized_and_clustered_tflite_file = tempfile.mkstemp('.tflite')

with open(quantized_and_clustered_tflite_file, 'wb') as f:
  f.write(tflite_quant_model)

print('Saved quantized and clustered TFLite model to:', quantized_and_clustered_tflite_file)
print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped clustered and quantized TFlite model: %.2f bytes" % (get_gzipped_model_size(quantized_and_clustered_tflite_file)))
 
INFO:tensorflow:Assets written to: /tmp/tmpg0gw8r5x/assets

INFO:tensorflow:Assets written to: /tmp/tmpg0gw8r5x/assets

Saved quantized and clustered TFLite model to: /tmp/tmp43crqft1.tflite
Size of gzipped baseline Keras model: 78076.00 bytes
Size of gzipped clustered and quantized TFlite model: 9830.00 bytes

Guarda la persistenza dell'accuratezza da TF a TFLite

Definire una funzione di supporto per valutare il modello TFLite nel set di dati di test.

 def eval_model(interpreter):
  input_index = interpreter.get_input_details()[0]["index"]
  output_index = interpreter.get_output_details()[0]["index"]

  # Run predictions on every image in the "test" dataset.
  prediction_digits = []
  for i, test_image in enumerate(test_images):
    if i % 1000 == 0:
      print('Evaluated on {n} results so far.'.format(n=i))
    # Pre-processing: add batch dimension and convert to float32 to match with
    # the model's input data format.
    test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
    interpreter.set_tensor(input_index, test_image)

    # Run inference.
    interpreter.invoke()

    # Post-processing: remove batch dimension and find the digit with highest
    # probability.
    output = interpreter.tensor(output_index)
    digit = np.argmax(output()[0])
    prediction_digits.append(digit)

  print('\n')
  # Compare prediction results with ground truth labels to calculate accuracy.
  prediction_digits = np.array(prediction_digits)
  accuracy = (prediction_digits == test_labels).mean()
  return accuracy
 

Valuta il modello, che è stato raggruppato e quantizzato, e poi vedi che l'accuratezza di TensorFlow persiste nel backend TFLite.

 interpreter = tf.lite.Interpreter(model_content=tflite_quant_model)
interpreter.allocate_tensors()

test_accuracy = eval_model(interpreter)

print('Clustered and quantized TFLite test_accuracy:', test_accuracy)
print('Clustered TF test accuracy:', clustered_model_accuracy)
 
Evaluated on 0 results so far.
Evaluated on 1000 results so far.
Evaluated on 2000 results so far.
Evaluated on 3000 results so far.
Evaluated on 4000 results so far.
Evaluated on 5000 results so far.
Evaluated on 6000 results so far.
Evaluated on 7000 results so far.
Evaluated on 8000 results so far.
Evaluated on 9000 results so far.


Clustered and quantized TFLite test_accuracy: 0.975
Clustered TF test accuracy: 0.9753000140190125

Conclusione

In questa esercitazione è stato illustrato come creare modelli cluster con l'API TensorFlow Model Optimization Toolkit. Più specificamente, hai seguito un esempio end-to-end per la creazione di un modello 8x più piccolo per MNIST con una differenza di precisione minima. Ti invitiamo a provare questa nuova funzionalità, che può essere particolarmente importante per la distribuzione in ambienti con risorse limitate.