Объявлена ​​повестка дня! Сохранить пятно на женщин в МЛ симпозиуме по 19 октября Зарегистрируйтесь сейчас

Кластеризация веса в примере Keras

Посмотреть на TensorFlow.org Запускаем в Google Colab Посмотреть исходный код на GitHub Скачать блокнот

Обзор

Добро пожаловать в комплексный пример весовой кластеризации , входящий в состав TensorFlow Model Optimization Toolkit.

Другие страницы

Чтобы получить представление о том, что такое кластеризация веса, и определить, следует ли ее использовать (включая то, что поддерживается), см. Страницу обзора .

Чтобы быстро найти API-интерфейсы, необходимые для вашего варианта использования (помимо полной кластеризации модели с 16 кластерами), см. Подробное руководство .

СОДЕРЖАНИЕ

В этом руководстве вы:

  1. tf.keras модель tf.keras для набора данных MNIST с нуля.
  2. Настройте модель, применив API кластеризации весов, и посмотрите на точность.
  3. Создайте модели TF и ​​TFLite в 6 раз меньше на основе кластеризации.
  4. Создайте модель TFLite в 8 раз меньше, объединив кластеризацию весов и квантование после обучения.
  5. Посмотрите на постоянство точности от TF к TFLite.

Настраивать

Вы можете запустить этот Jupyter ноутбук в вашем virtualenv или colab . Подробнее о настройке зависимостей см. В руководстве по установке .

 pip install -q tensorflow-model-optimization
import tensorflow as tf
from tensorflow import keras

import numpy as np
import tempfile
import zipfile
import os

Обучите модель tf.keras для MNIST без кластеризации

# Load MNIST dataset
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images  = test_images / 255.0

# Define the model architecture.
model = keras.Sequential([
    keras.layers.InputLayer(input_shape=(28, 28)),
    keras.layers.Reshape(target_shape=(28, 28, 1)),
    keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),
    keras.layers.MaxPooling2D(pool_size=(2, 2)),
    keras.layers.Flatten(),
    keras.layers.Dense(10)
])

# Train the digit classification model
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model.fit(
    train_images,
    train_labels,
    validation_split=0.1,
    epochs=10
)
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376/11490434 [==============================] - 0s 0us/step
Epoch 1/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.3008 - accuracy: 0.9148 - val_loss: 0.1216 - val_accuracy: 0.9687
Epoch 2/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.1221 - accuracy: 0.9651 - val_loss: 0.0861 - val_accuracy: 0.9758
Epoch 3/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0897 - accuracy: 0.9741 - val_loss: 0.0710 - val_accuracy: 0.9802
Epoch 4/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0727 - accuracy: 0.9787 - val_loss: 0.0719 - val_accuracy: 0.9803
Epoch 5/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0631 - accuracy: 0.9808 - val_loss: 0.0657 - val_accuracy: 0.9822
Epoch 6/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0554 - accuracy: 0.9833 - val_loss: 0.0601 - val_accuracy: 0.9820
Epoch 7/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0489 - accuracy: 0.9855 - val_loss: 0.0647 - val_accuracy: 0.9805
Epoch 8/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0442 - accuracy: 0.9869 - val_loss: 0.0575 - val_accuracy: 0.9845
Epoch 9/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0403 - accuracy: 0.9875 - val_loss: 0.0596 - val_accuracy: 0.9820
Epoch 10/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0362 - accuracy: 0.9888 - val_loss: 0.0588 - val_accuracy: 0.9833
<tensorflow.python.keras.callbacks.History at 0x7f0e6f780a58>

Оцените базовую модель и сохраните ее для дальнейшего использования.

_, baseline_model_accuracy = model.evaluate(
    test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy)

_, keras_file = tempfile.mkstemp('.h5')
print('Saving model to: ', keras_file)
tf.keras.models.save_model(model, keras_file, include_optimizer=False)
Baseline test accuracy: 0.9785000085830688
Saving model to:  /tmp/tmpjo5b6jen.h5

Точная настройка предварительно обученной модели с помощью кластеризации

Примените API cluster_weights() ко всей предварительно обученной модели, чтобы продемонстрировать его эффективность в уменьшении размера модели после применения zip при сохранении приличной точности. Чтобы узнать, как лучше всего сбалансировать точность и степень сжатия для вашего варианта использования, см. Пример для каждого слоя в подробном руководстве .

Определите модель и примените API кластеризации

Прежде чем передавать модель в API кластеризации, убедитесь, что она обучена и показывает приемлемую точность.

import tensorflow_model_optimization as tfmot

cluster_weights = tfmot.clustering.keras.cluster_weights
CentroidInitialization = tfmot.clustering.keras.CentroidInitialization

clustering_params = {
  'number_of_clusters': 16,
  'cluster_centroids_init': CentroidInitialization.LINEAR
}

# Cluster a whole model
clustered_model = cluster_weights(model, **clustering_params)

# Use smaller learning rate for fine-tuning clustered model
opt = tf.keras.optimizers.Adam(learning_rate=1e-5)

clustered_model.compile(
  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
  optimizer=opt,
  metrics=['accuracy'])

clustered_model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
cluster_reshape (ClusterWeig (None, 28, 28, 1)         0         
_________________________________________________________________
cluster_conv2d (ClusterWeigh (None, 26, 26, 12)        136       
_________________________________________________________________
cluster_max_pooling2d (Clust (None, 13, 13, 12)        0         
_________________________________________________________________
cluster_flatten (ClusterWeig (None, 2028)              0         
_________________________________________________________________
cluster_dense (ClusterWeight (None, 10)                20306     
=================================================================
Total params: 20,442
Trainable params: 54
Non-trainable params: 20,388
_________________________________________________________________

Выполните точную настройку модели и оцените точность по сравнению с базовой линией

Настройте модель с кластеризацией для 1 эпохи.

# Fine-tune model
clustered_model.fit(
  train_images,
  train_labels,
  batch_size=500,
  epochs=1,
  validation_split=0.1)
108/108 [==============================] - 2s 16ms/step - loss: 0.0453 - accuracy: 0.9851 - val_loss: 0.0699 - val_accuracy: 0.9802
<tensorflow.python.keras.callbacks.History at 0x7f0e543ffeb8>

В этом примере потеря точности теста после кластеризации минимальна по сравнению с базовой линией.

_, clustered_model_accuracy = clustered_model.evaluate(
  test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy)
print('Clustered test accuracy:', clustered_model_accuracy)
Baseline test accuracy: 0.9785000085830688
Clustered test accuracy: 0.9746000170707703

Создание 6-кратных моделей меньшего размера на основе кластеризации

И strip_clustering и применение стандартного алгоритма сжатия (например, через gzip) необходимы, чтобы увидеть преимущества сжатия от кластеризации.

Сначала создайте сжимаемую модель для TensorFlow. Здесь strip_clustering удаляет все переменные (например, tf.Variable для хранения центроидов кластера и индексов), которые нужны кластеризации только во время обучения, что в противном случае увеличило бы размер модели во время логического вывода.

final_model = tfmot.clustering.keras.strip_clustering(clustered_model)

_, clustered_keras_file = tempfile.mkstemp('.h5')
print('Saving clustered model to: ', clustered_keras_file)
tf.keras.models.save_model(final_model, clustered_keras_file, 
                           include_optimizer=False)
Saving clustered model to:  /tmp/tmpo83fpb0m.h5

Затем создайте сжимаемые модели для TFLite. Вы можете преобразовать кластерную модель в формат, работающий на вашем целевом сервере. TensorFlow Lite - это пример, который вы можете использовать для развертывания на мобильных устройствах.

clustered_tflite_file = '/tmp/clustered_mnist.tflite'
converter = tf.lite.TFLiteConverter.from_keras_model(final_model)
tflite_clustered_model = converter.convert()
with open(clustered_tflite_file, 'wb') as f:
  f.write(tflite_clustered_model)
print('Saved clustered TFLite model to:', clustered_tflite_file)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.
INFO:tensorflow:Assets written to: /tmp/tmp4gcxcvlh/assets
Saved clustered TFLite model to: /tmp/clustered_mnist.tflite

Определите вспомогательную функцию для фактического сжатия моделей с помощью gzip и измерения размера заархивированного файла.

def get_gzipped_model_size(file):
  # It returns the size of the gzipped model in bytes.
  import os
  import zipfile

  _, zipped_file = tempfile.mkstemp('.zip')
  with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
    f.write(file)

  return os.path.getsize(zipped_file)

Сравните и убедитесь, что модели в 6 раз меньше от кластеризации

print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped clustered Keras model: %.2f bytes" % (get_gzipped_model_size(clustered_keras_file)))
print("Size of gzipped clustered TFlite model: %.2f bytes" % (get_gzipped_model_size(clustered_tflite_file)))
Size of gzipped baseline Keras model: 78047.00 bytes
Size of gzipped clustered Keras model: 12524.00 bytes
Size of gzipped clustered TFlite model: 12141.00 bytes

Создайте модель TFLite в 8 раз меньше, объединив кластеризацию весов и квантование после обучения.

Вы можете применить квантование после обучения к кластерной модели для получения дополнительных преимуществ.

converter = tf.lite.TFLiteConverter.from_keras_model(final_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_quant_model = converter.convert()

_, quantized_and_clustered_tflite_file = tempfile.mkstemp('.tflite')

with open(quantized_and_clustered_tflite_file, 'wb') as f:
  f.write(tflite_quant_model)

print('Saved quantized and clustered TFLite model to:', quantized_and_clustered_tflite_file)
print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped clustered and quantized TFlite model: %.2f bytes" % (get_gzipped_model_size(quantized_and_clustered_tflite_file)))
INFO:tensorflow:Assets written to: /tmp/tmpt2flzp4s/assets
INFO:tensorflow:Assets written to: /tmp/tmpt2flzp4s/assets
Saved quantized and clustered TFLite model to: /tmp/tmpgu3loy72.tflite
Size of gzipped baseline Keras model: 78047.00 bytes
Size of gzipped clustered and quantized TFlite model: 9240.00 bytes

Оцените постоянство точности при переходе от TF к TFLite

Определите вспомогательную функцию для оценки модели TFLite в тестовом наборе данных.

def eval_model(interpreter):
  input_index = interpreter.get_input_details()[0]["index"]
  output_index = interpreter.get_output_details()[0]["index"]

  # Run predictions on every image in the "test" dataset.
  prediction_digits = []
  for i, test_image in enumerate(test_images):
    if i % 1000 == 0:
      print('Evaluated on {n} results so far.'.format(n=i))
    # Pre-processing: add batch dimension and convert to float32 to match with
    # the model's input data format.
    test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
    interpreter.set_tensor(input_index, test_image)

    # Run inference.
    interpreter.invoke()

    # Post-processing: remove batch dimension and find the digit with highest
    # probability.
    output = interpreter.tensor(output_index)
    digit = np.argmax(output()[0])
    prediction_digits.append(digit)

  print('\n')
  # Compare prediction results with ground truth labels to calculate accuracy.
  prediction_digits = np.array(prediction_digits)
  accuracy = (prediction_digits == test_labels).mean()
  return accuracy

Вы оцениваете модель, которая была кластеризована и квантована, а затем видите, что точность от TensorFlow сохраняется до бэкэнда TFLite.

interpreter = tf.lite.Interpreter(model_content=tflite_quant_model)
interpreter.allocate_tensors()

test_accuracy = eval_model(interpreter)

print('Clustered and quantized TFLite test_accuracy:', test_accuracy)
print('Clustered TF test accuracy:', clustered_model_accuracy)
Evaluated on 0 results so far.
Evaluated on 1000 results so far.
Evaluated on 2000 results so far.
Evaluated on 3000 results so far.
Evaluated on 4000 results so far.
Evaluated on 5000 results so far.
Evaluated on 6000 results so far.
Evaluated on 7000 results so far.
Evaluated on 8000 results so far.
Evaluated on 9000 results so far.


Clustered and quantized TFLite test_accuracy: 0.9746
Clustered TF test accuracy: 0.9746000170707703

Заключение

В этом руководстве вы узнали, как создавать кластерные модели с помощью TensorFlow Model Optimization Toolkit API. В частности, вы прошли сквозной пример создания модели MNIST в 8 раз меньшего размера с минимальной разницей в точности. Мы рекомендуем вам попробовать эту новую возможность, которая может быть особенно важна для развертывания в средах с ограниченными ресурсами.