এমএল কমিউনিটি দিবস 9 নভেম্বর! TensorFlow, Jax থেকে আপডেটের জন্য আমাদের সাথে যোগ দিন, এবং আরও আরও জানুন

স্পারসিটি এবং ক্লাস্টার সংরক্ষণ কোয়ান্টাইজেশন সচেতন প্রশিক্ষণ (PCQAT) কেরাস উদাহরণ

TensorFlow.org এ দেখুন গুগল কোলাবে চালান GitHub এ দেখুন নোটবুক ডাউনলোড করুন

ওভারভিউ

এই sparsity ব্যবহার দেখাচ্ছে শেষ উদাহরণ প্রয়োজন এবং quantization সচেতন প্রশিক্ষণ (PCQAT) এপিআই, TensorFlow মডেল অপ্টিমাইজেশান টুলকিট এর সহযোগীতা অপ্টিমাইজেশান পাইপলাইন অংশ সংরক্ষণের ক্লাস্টার শেষ হয়।

অন্যান্য পাতা

পাইপলাইন অথবা অন্যান্য লভ্য কৌশল একটি ভূমিকা জন্য, দেখুন সহযোগীতা অপ্টিমাইজেশান ওভারভিউ পৃষ্ঠায়

সামগ্রী

টিউটোরিয়ালে, আপনি:

  1. একটি ট্রেন tf.keras গোড়া থেকে MNIST ডেটা সেটটি জন্য মডেল।
  2. ছাঁটাইয়ের সাথে মডেলটিকে ফাইন-টিউন করুন এবং সঠিকতা দেখুন এবং লক্ষ্য করুন যে মডেলটি সফলভাবে ছাঁটাই করা হয়েছিল।
  3. ছাঁটাই করা মডেলটিতে স্পারসিটি সংরক্ষণ ক্লাস্টারিং প্রয়োগ করুন এবং লক্ষ্য করুন যে আগে প্রয়োগ করা স্পার্সিটি সংরক্ষণ করা হয়েছে।
  4. QAT প্রয়োগ করুন এবং স্পারসিটি এবং ক্লাস্টারের ক্ষতি পর্যবেক্ষণ করুন।
  5. PCQAT প্রয়োগ করুন এবং লক্ষ্য করুন যে স্পারসিটি এবং ক্লাস্টারিং উভয়ই পূর্বে প্রয়োগ করা হয়েছে।
  6. একটি TFLite মডেল তৈরি করুন এবং এটিতে PCQAT প্রয়োগের প্রভাবগুলি পর্যবেক্ষণ করুন।
  7. স্পারসিটি প্রয়োগের সংকোচনের সুবিধাগুলি পর্যবেক্ষণ করতে বিভিন্ন মডেলের আকারের তুলনা করুন এবং তারপরে ক্লাস্টারিং এবং PCQAT সংরক্ষণের সহযোগিতামূলক অপ্টিমাইজেশন কৌশল অনুসরণ করুন।
  8. সম্পূর্ণরূপে অপটিমাইজড মডেলের অ্যাকুরেসির তুলনা করুন আন-অপ্টিমাইজড বেসলাইন মডেলের নির্ভুলতার সাথে।

সেটআপ

আপনি আপনার স্থানীয় এই Jupyter নোটবুক চালাতে পারেন virtualenv বা colab । নির্ভরতা স্থাপনের জানার জন্য, অনুগ্রহ পড়ুন ইনস্টলেশন গাইড

 pip install -q tensorflow-model-optimization
import tensorflow as tf

import numpy as np
import tempfile
import zipfile
import os

MNIST কে ছাঁটাই এবং গুচ্ছ করার জন্য একটি tf.keras মডেল প্রশিক্ষণ দিন

# Load MNIST dataset
mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images  = test_images / 255.0

model = tf.keras.Sequential([
  tf.keras.layers.InputLayer(input_shape=(28, 28)),
  tf.keras.layers.Reshape(target_shape=(28, 28, 1)),
  tf.keras.layers.Conv2D(filters=12, kernel_size=(3, 3),
                         activation=tf.nn.relu),
  tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(10)
])

opt = tf.keras.optimizers.Adam(learning_rate=1e-3)

# Train the digit classification model
model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model.fit(
    train_images,
    train_labels,
    validation_split=0.1,
    epochs=10
)
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376/11490434 [==============================] - 0s 0us/step
11501568/11490434 [==============================] - 0s 0us/step
2021-09-02 11:14:14.164834: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
Epoch 1/10
1688/1688 [==============================] - 8s 5ms/step - loss: 0.2842 - accuracy: 0.9215 - val_loss: 0.1078 - val_accuracy: 0.9713
Epoch 2/10
1688/1688 [==============================] - 8s 5ms/step - loss: 0.1110 - accuracy: 0.9684 - val_loss: 0.0773 - val_accuracy: 0.9783
Epoch 3/10
1688/1688 [==============================] - 8s 4ms/step - loss: 0.0821 - accuracy: 0.9760 - val_loss: 0.0676 - val_accuracy: 0.9803
Epoch 4/10
1688/1688 [==============================] - 8s 4ms/step - loss: 0.0684 - accuracy: 0.9799 - val_loss: 0.0600 - val_accuracy: 0.9825
Epoch 5/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0590 - accuracy: 0.9828 - val_loss: 0.0601 - val_accuracy: 0.9838
Epoch 6/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0522 - accuracy: 0.9845 - val_loss: 0.0599 - val_accuracy: 0.9835
Epoch 7/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0472 - accuracy: 0.9863 - val_loss: 0.0544 - val_accuracy: 0.9862
Epoch 8/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0422 - accuracy: 0.9868 - val_loss: 0.0579 - val_accuracy: 0.9848
Epoch 9/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0384 - accuracy: 0.9884 - val_loss: 0.0569 - val_accuracy: 0.9847
Epoch 10/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0347 - accuracy: 0.9892 - val_loss: 0.0559 - val_accuracy: 0.9840
<keras.callbacks.History at 0x7f6a8212c550>

বেসলাইন মডেলটি মূল্যায়ন করুন এবং এটি পরবর্তী ব্যবহারের জন্য সংরক্ষণ করুন

_, baseline_model_accuracy = model.evaluate(
    test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy)

_, keras_file = tempfile.mkstemp('.h5')
print('Saving model to: ', keras_file)
tf.keras.models.save_model(model, keras_file, include_optimizer=False)
Baseline test accuracy: 0.9811000227928162
Saving model to:  /tmp/tmprlekfdwb.h5

মডেল ছাঁটাই এবং সূক্ষ্ম সুর 50% sparsity

আবেদন করুন prune_low_magnitude() ছেঁটে মডেল যে পরবর্তী পদক্ষেপে ক্লাস্টার করা অর্জনে API- টি। পড়ুন ছাঁটাই ব্যাপক গাইড কেঁটে সাফ API- এর উপর আরও তথ্যের জন্য।

মডেলটি সংজ্ঞায়িত করুন এবং স্পারসিটি এপিআই প্রয়োগ করুন

লক্ষ্য করুন যে প্রাক প্রশিক্ষিত মডেল ব্যবহার করা হয়।

import tensorflow_model_optimization as tfmot

prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude

pruning_params = {
      'pruning_schedule': tfmot.sparsity.keras.ConstantSparsity(0.5, begin_step=0, frequency=100)
  }

callbacks = [
  tfmot.sparsity.keras.UpdatePruningStep()
]

pruned_model = prune_low_magnitude(model, **pruning_params)

# Use smaller learning rate for fine-tuning
opt = tf.keras.optimizers.Adam(learning_rate=1e-5)

pruned_model.compile(
  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
  optimizer=opt,
  metrics=['accuracy'])
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/base_layer.py:2223: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead.
  warnings.warn('`layer.add_variable` is deprecated and '

মডেলটিকে ফাইন-টিউন করুন, স্পারসিটি পরীক্ষা করুন এবং বেসলাইনের বিপরীতে নির্ভুলতা মূল্যায়ন করুন

3 যুগের জন্য ছাঁটাই সঙ্গে মডেল সূক্ষ্ম সুর।

# Fine-tune model
pruned_model.fit(
  train_images,
  train_labels,
  epochs=3,
  validation_split=0.1,
  callbacks=callbacks)
2021-09-02 11:15:31.836903: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
Epoch 1/3
1688/1688 [==============================] - 9s 5ms/step - loss: 0.2095 - accuracy: 0.9305 - val_loss: 0.1440 - val_accuracy: 0.9528
Epoch 2/3
1688/1688 [==============================] - 8s 4ms/step - loss: 0.1042 - accuracy: 0.9671 - val_loss: 0.0947 - val_accuracy: 0.9715
Epoch 3/3
1688/1688 [==============================] - 8s 4ms/step - loss: 0.0743 - accuracy: 0.9782 - val_loss: 0.0829 - val_accuracy: 0.9770
<keras.callbacks.History at 0x7f6a81f94250>

মডেলের স্পারসিটি এবং ক্লাস্টার গণনা এবং প্রিন্ট করার জন্য হেল্পার ফাংশন সংজ্ঞায়িত করুন।

def print_model_weights_sparsity(model):
    for layer in model.layers:
        if isinstance(layer, tf.keras.layers.Wrapper):
            weights = layer.trainable_weights
        else:
            weights = layer.weights
        for weight in weights:
            if "kernel" not in weight.name or "centroid" in weight.name:
                continue
            weight_size = weight.numpy().size
            zero_num = np.count_nonzero(weight == 0)
            print(
                f"{weight.name}: {zero_num/weight_size:.2%} sparsity ",
                f"({zero_num}/{weight_size})",
            )

def print_model_weight_clusters(model):
    for layer in model.layers:
        if isinstance(layer, tf.keras.layers.Wrapper):
            weights = layer.trainable_weights
        else:
            weights = layer.weights
        for weight in weights:
            # ignore auxiliary quantization weights
            if "quantize_layer" in weight.name:
                continue
            if "kernel" in weight.name:
                unique_count = len(np.unique(weight))
                print(
                    f"{layer.name}/{weight.name}: {unique_count} clusters "
                )

আসুন প্রথমে ছাঁটাইয়ের মোড়কটি খুলে ফেলি, তারপরে পরীক্ষা করুন যে মডেল কার্নেলগুলি সঠিকভাবে ছাঁটাই করা হয়েছিল।

stripped_pruned_model = tfmot.sparsity.keras.strip_pruning(pruned_model)

print_model_weights_sparsity(stripped_pruned_model)
conv2d/kernel:0: 50.00% sparsity  (54/108)
dense/kernel:0: 50.00% sparsity  (10140/20280)

ক্লাস্টারিং সংরক্ষণকারী স্পারসিটি প্রয়োগ করুন এবং উভয় ক্ষেত্রেই মডেল স্পারসিটির উপর এর প্রভাব পরীক্ষা করুন

এরপরে, ছাঁটাই করা মডেলে স্পারসিটি সংরক্ষণকারী ক্লাস্টারিং প্রয়োগ করুন এবং ক্লাস্টারের সংখ্যা পর্যবেক্ষণ করুন এবং স্পারসিটি সংরক্ষিত আছে কিনা তা পরীক্ষা করুন।

import tensorflow_model_optimization as tfmot
from tensorflow_model_optimization.python.core.clustering.keras.experimental import (
    cluster,
)

cluster_weights = tfmot.clustering.keras.cluster_weights
CentroidInitialization = tfmot.clustering.keras.CentroidInitialization

cluster_weights = cluster.cluster_weights

clustering_params = {
  'number_of_clusters': 8,
  'cluster_centroids_init': CentroidInitialization.KMEANS_PLUS_PLUS,
  'preserve_sparsity': True
}

sparsity_clustered_model = cluster_weights(stripped_pruned_model, **clustering_params)

sparsity_clustered_model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

print('Train sparsity preserving clustering model:')
sparsity_clustered_model.fit(train_images, train_labels,epochs=3, validation_split=0.1)
Train sparsity preserving clustering model:
Epoch 1/3
1688/1688 [==============================] - 9s 5ms/step - loss: 0.0495 - accuracy: 0.9847 - val_loss: 0.0611 - val_accuracy: 0.9843
Epoch 2/3
1688/1688 [==============================] - 8s 5ms/step - loss: 0.0472 - accuracy: 0.9855 - val_loss: 0.0705 - val_accuracy: 0.9812
Epoch 3/3
1688/1688 [==============================] - 8s 5ms/step - loss: 0.0463 - accuracy: 0.9846 - val_loss: 0.0796 - val_accuracy: 0.9780
<keras.callbacks.History at 0x7f6a81c10250>

প্রথমে ক্লাস্টারিং মোড়কটি টানুন, তারপরে পরীক্ষা করুন যে মডেলটি সঠিকভাবে ছাঁটাই করা হয়েছে এবং ক্লাস্টার করা হয়েছে।

stripped_clustered_model = tfmot.clustering.keras.strip_clustering(sparsity_clustered_model)

print("Model sparsity:\n")
print_model_weights_sparsity(stripped_clustered_model)

print("\nModel clusters:\n")
print_model_weight_clusters(stripped_clustered_model)
Model sparsity:

kernel:0: 51.85% sparsity  (56/108)
kernel:0: 60.83% sparsity  (12337/20280)

Model clusters:

conv2d/kernel:0: 8 clusters 
dense/kernel:0: 8 clusters

QAT এবং PCQAT প্রয়োগ করুন এবং মডেল ক্লাস্টার এবং স্পারসিটির উপর প্রভাব পরীক্ষা করুন

এরপরে, স্পার্ট ক্লাস্টার মডেলে QAT এবং PCQAT উভয়ই প্রয়োগ করুন এবং লক্ষ্য করুন যে PCQAT আপনার মডেলের ওজন স্পারসিটি এবং ক্লাস্টারগুলি সংরক্ষণ করে। লক্ষ্য করুন যে ছিনতাই করা মডেলটি QAT এবং PCQAT API- এর কাছে প্রেরণ করা হয়েছে।

# QAT
qat_model = tfmot.quantization.keras.quantize_model(stripped_clustered_model)

qat_model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
print('Train qat model:')
qat_model.fit(train_images, train_labels, batch_size=128, epochs=1, validation_split=0.1)

# PCQAT
quant_aware_annotate_model = tfmot.quantization.keras.quantize_annotate_model(
              stripped_clustered_model)
pcqat_model = tfmot.quantization.keras.quantize_apply(
              quant_aware_annotate_model,
              tfmot.experimental.combine.Default8BitClusterPreserveQuantizeScheme(preserve_sparsity=True))

pcqat_model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
print('Train pcqat model:')
pcqat_model.fit(train_images, train_labels, batch_size=128, epochs=1, validation_split=0.1)
Train qat model:
422/422 [==============================] - 4s 8ms/step - loss: 0.0343 - accuracy: 0.9892 - val_loss: 0.0600 - val_accuracy: 0.9858
Train pcqat model:
WARNING:tensorflow:Gradients do not exist for variables ['conv2d/kernel:0', 'dense/kernel:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['conv2d/kernel:0', 'dense/kernel:0'] when minimizing the loss.
422/422 [==============================] - 4s 8ms/step - loss: 0.0371 - accuracy: 0.9880 - val_loss: 0.0664 - val_accuracy: 0.9832
<keras.callbacks.History at 0x7f6a81792910>
print("QAT Model clusters:")
print_model_weight_clusters(qat_model)
print("\nQAT Model sparsity:")
print_model_weights_sparsity(qat_model)
print("\nPCQAT Model clusters:")
print_model_weight_clusters(pcqat_model)
print("\nPCQAT Model sparsity:")
print_model_weights_sparsity(pcqat_model)
QAT Model clusters:
quant_conv2d/conv2d/kernel:0: 101 clusters 
quant_dense/dense/kernel:0: 18285 clusters 

QAT Model sparsity:
conv2d/kernel:0: 7.41% sparsity  (8/108)
dense/kernel:0: 7.64% sparsity  (1549/20280)

PCQAT Model clusters:
quant_conv2d/conv2d/kernel:0: 8 clusters 
quant_dense/dense/kernel:0: 8 clusters 

PCQAT Model sparsity:
conv2d/kernel:0: 51.85% sparsity  (56/108)
dense/kernel:0: 60.84% sparsity  (12338/20280)

PCQAT মডেলের কম্প্রেশন সুবিধা দেখুন

জিপড মডেল ফাইল পেতে সাহায্যকারী ফাংশন নির্ধারণ করুন।

def get_gzipped_model_size(file):
  # It returns the size of the gzipped model in kilobytes.

  _, zipped_file = tempfile.mkstemp('.zip')
  with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
    f.write(file)

  return os.path.getsize(zipped_file)/1000

লক্ষ্য করুন যে একটি মডেলে স্পারসিটি, ক্লাস্টারিং এবং PCQAT প্রয়োগ করলে উল্লেখযোগ্য সংকোচনের সুবিধা পাওয়া যায়।

# QAT model
converter = tf.lite.TFLiteConverter.from_keras_model(qat_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
qat_tflite_model = converter.convert()
qat_model_file = 'qat_model.tflite'
# Save the model.
with open(qat_model_file, 'wb') as f:
    f.write(qat_tflite_model)

# PCQAT model
converter = tf.lite.TFLiteConverter.from_keras_model(pcqat_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
pcqat_tflite_model = converter.convert()
pcqat_model_file = 'pcqat_model.tflite'
# Save the model.
with open(pcqat_model_file, 'wb') as f:
    f.write(pcqat_tflite_model)

print("QAT model size: ", get_gzipped_model_size(qat_model_file), ' KB')
print("PCQAT model size: ", get_gzipped_model_size(pcqat_model_file), ' KB')
WARNING:absl:Found untraced functions such as reshape_layer_call_and_return_conditional_losses, reshape_layer_call_fn, conv2d_layer_call_and_return_conditional_losses, conv2d_layer_call_fn, flatten_layer_call_and_return_conditional_losses while saving (showing 5 of 20). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: /tmp/tmp6_obh00g/assets
INFO:tensorflow:Assets written to: /tmp/tmp6_obh00g/assets
2021-09-02 11:16:32.221664: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-09-02 11:16:32.221712: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.
WARNING:absl:Found untraced functions such as reshape_layer_call_and_return_conditional_losses, reshape_layer_call_fn, conv2d_layer_call_and_return_conditional_losses, conv2d_layer_call_fn, flatten_layer_call_and_return_conditional_losses while saving (showing 5 of 20). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: /tmp/tmpuqqwyk0s/assets
INFO:tensorflow:Assets written to: /tmp/tmpuqqwyk0s/assets
QAT model size:  13.723  KB
PCQAT model size:  7.352  KB
2021-09-02 11:16:33.766310: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-09-02 11:16:33.766350: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.

TF থেকে TFLite পর্যন্ত নির্ভুলতার দৃ pers়তা দেখুন

পরীক্ষার ডেটাসেটে TFLite মডেল মূল্যায়ন করার জন্য একটি সহায়ক ফাংশন সংজ্ঞায়িত করুন।

def eval_model(interpreter):
  input_index = interpreter.get_input_details()[0]["index"]
  output_index = interpreter.get_output_details()[0]["index"]

  # Run predictions on every image in the "test" dataset.
  prediction_digits = []
  for i, test_image in enumerate(test_images):
    if i % 1000 == 0:
      print(f"Evaluated on {i} results so far.")
    # Pre-processing: add batch dimension and convert to float32 to match with
    # the model's input data format.
    test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
    interpreter.set_tensor(input_index, test_image)

    # Run inference.
    interpreter.invoke()

    # Post-processing: remove batch dimension and find the digit with highest
    # probability.
    output = interpreter.tensor(output_index)
    digit = np.argmax(output()[0])
    prediction_digits.append(digit)

  print('\n')
  # Compare prediction results with ground truth labels to calculate accuracy.
  prediction_digits = np.array(prediction_digits)
  accuracy = (prediction_digits == test_labels).mean()
  return accuracy

মডেলটি মূল্যায়ন করুন, যা ছাঁটাই করা হয়েছে, ক্লাস্টার করা হয়েছে এবং কোয়ান্টাইজ করা হয়েছে, এবং তারপর দেখুন TFLite ব্যাকএন্ডে TensorFlow থেকে নির্ভুলতা বজায় আছে।

interpreter = tf.lite.Interpreter(pcqat_model_file)
interpreter.allocate_tensors()

pcqat_test_accuracy = eval_model(interpreter)

print('Pruned, clustered and quantized TFLite test_accuracy:', pcqat_test_accuracy)
print('Baseline TF test accuracy:', baseline_model_accuracy)
Evaluated on 0 results so far.
Evaluated on 1000 results so far.
Evaluated on 2000 results so far.
Evaluated on 3000 results so far.
Evaluated on 4000 results so far.
Evaluated on 5000 results so far.
Evaluated on 6000 results so far.
Evaluated on 7000 results so far.
Evaluated on 8000 results so far.
Evaluated on 9000 results so far.


Pruned, clustered and quantized TFLite test_accuracy: 0.9803
Baseline TF test accuracy: 0.9811000227928162

উপসংহার

এই টিউটোরিয়ালে, আপনি একটি মডেল তৈরি করার পদ্ধতি ব্যবহার করে এটি আলুবোখারা শিখেছি prune_low_magnitude() এপিআই, এবং ব্যবহার sparsity সংরক্ষণের ক্লাস্টারিং আবেদন cluster_weights() ওজন ক্লাস্টারিং যখন sparsity সংরক্ষণে API- টি।

পরবর্তী, QAT ব্যবহার করার সময় মডেল স্পারসিটি এবং ক্লাস্টার সংরক্ষণের জন্য কোয়ার্টাইজেশন সচেতন প্রশিক্ষণ (PCQAT) প্রয়োগ করা হয়। চূড়ান্ত PCQAT মডেলটি QAT এর সাথে তুলনা করা হয়েছিল যাতে দেখা যায় যে স্পারসিটি এবং ক্লাস্টারগুলি পূর্বে সংরক্ষিত আছে এবং পরবর্তীতে হারিয়ে গেছে।

পরবর্তীতে, চেইন স্পারসিটি, ক্লাস্টারিং, এবং PCQAT মডেল অপ্টিমাইজেশন কৌশলগুলির কম্প্রেশন বেনিফিট দেখানোর জন্য মডেলগুলিকে TFLite এ রূপান্তরিত করা হয় এবং TFLite মডেলটি মূল্যায়ন করা হয় যাতে TFLite ব্যাকএন্ডে নির্ভুলতা বজায় থাকে।

অবশেষে, PCQAT TFLite মডেলের নির্ভুলতাকে প্রাক-অপ্টিমাইজেশন বেসলাইন মডেল নির্ভুলতার সাথে তুলনা করা হয়েছে যাতে দেখানো হয়েছে যে সহযোগী অপটিমাইজেশন কৌশলগুলি মূল মডেলের তুলনায় অনুরূপ নির্ভুলতা বজায় রেখে কম্প্রেশন সুবিধা অর্জন করতে সক্ষম হয়েছে।