¡Google I/O es una envoltura! Póngase al día con las sesiones de TensorFlow Ver sesiones

Ejemplo de Keras de escasez y conglomerado que preserva el entrenamiento consciente de la cuantificación (PCQAT)

Ver en TensorFlow.org Ejecutar en Google Colab Ver en GitHub Descargar cuaderno

Descripción general

Este es un fin al ejemplo extremo que muestra el uso de la escasez y el grupo preservar API cuantificación conscientes de entrenamiento (PCQAT), que forma parte de la tubería de colaboración optimización del modelo de optimización de TensorFlow Toolkit.

Otras paginas

Para una introducción a la tubería y otras técnicas disponibles, consulte la página de información general de colaboración optimización .

Contenido

En el tutorial, podrá:

  1. Entrenar a un tf.keras modelo para el conjunto de datos MNIST desde cero.
  2. Ajuste el modelo con la poda y observe la precisión y observe que el modelo se poda con éxito.
  3. Aplique la dispersión preservando la agrupación en el modelo podado y observe que la escasez aplicada anteriormente se ha conservado.
  4. Aplique QAT y observe la pérdida de escasez y racimos.
  5. Aplique PCQAT y observe que tanto la escasez como la agrupación aplicada anteriormente se han conservado.
  6. Genere un modelo TFLite y observe los efectos de aplicarle PCQAT.
  7. Compare los tamaños de los diferentes modelos para observar los beneficios de la compresión de aplicar la dispersión seguida de las técnicas de optimización colaborativa de la dispersión preservando la agrupación en clústeres y PCQAT.
  8. Compare la precisión del modelo totalmente optimizado con la precisión del modelo de referencia no optimizado.

Configuración

Puede ejecutar este Notebook Jupyter en su local de virtualenv o colab . Para los detalles de la creación de dependencias, consulte la guía de instalación .

 pip install -q tensorflow-model-optimization
import tensorflow as tf

import numpy as np
import tempfile
import zipfile
import os

Entrene un modelo tf.keras para que MNIST sea podado y agrupado

# Load MNIST dataset
mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images  = test_images / 255.0

model = tf.keras.Sequential([
  tf.keras.layers.InputLayer(input_shape=(28, 28)),
  tf.keras.layers.Reshape(target_shape=(28, 28, 1)),
  tf.keras.layers.Conv2D(filters=12, kernel_size=(3, 3),
                         activation=tf.nn.relu),
  tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(10)
])

opt = tf.keras.optimizers.Adam(learning_rate=1e-3)

# Train the digit classification model
model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model.fit(
    train_images,
    train_labels,
    validation_split=0.1,
    epochs=10
)
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376/11490434 [==============================] - 0s 0us/step
11501568/11490434 [==============================] - 0s 0us/step
2021-09-02 11:14:14.164834: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
Epoch 1/10
1688/1688 [==============================] - 8s 5ms/step - loss: 0.2842 - accuracy: 0.9215 - val_loss: 0.1078 - val_accuracy: 0.9713
Epoch 2/10
1688/1688 [==============================] - 8s 5ms/step - loss: 0.1110 - accuracy: 0.9684 - val_loss: 0.0773 - val_accuracy: 0.9783
Epoch 3/10
1688/1688 [==============================] - 8s 4ms/step - loss: 0.0821 - accuracy: 0.9760 - val_loss: 0.0676 - val_accuracy: 0.9803
Epoch 4/10
1688/1688 [==============================] - 8s 4ms/step - loss: 0.0684 - accuracy: 0.9799 - val_loss: 0.0600 - val_accuracy: 0.9825
Epoch 5/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0590 - accuracy: 0.9828 - val_loss: 0.0601 - val_accuracy: 0.9838
Epoch 6/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0522 - accuracy: 0.9845 - val_loss: 0.0599 - val_accuracy: 0.9835
Epoch 7/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0472 - accuracy: 0.9863 - val_loss: 0.0544 - val_accuracy: 0.9862
Epoch 8/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0422 - accuracy: 0.9868 - val_loss: 0.0579 - val_accuracy: 0.9848
Epoch 9/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0384 - accuracy: 0.9884 - val_loss: 0.0569 - val_accuracy: 0.9847
Epoch 10/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0347 - accuracy: 0.9892 - val_loss: 0.0559 - val_accuracy: 0.9840
<keras.callbacks.History at 0x7f6a8212c550>

Evalúe el modelo de línea de base y guárdelo para su uso posterior

_, baseline_model_accuracy = model.evaluate(
    test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy)

_, keras_file = tempfile.mkstemp('.h5')
print('Saving model to: ', keras_file)
tf.keras.models.save_model(model, keras_file, include_optimizer=False)
Baseline test accuracy: 0.9811000227928162
Saving model to:  /tmp/tmprlekfdwb.h5

Pode y afine el modelo al 50% de escasez

Aplicar la prune_low_magnitude() API para lograr el modelo de podado que ha de ser agrupado en la siguiente etapa. Consulte la guía completa poda para obtener más información sobre la API de poda.

Definir el modelo y aplicar la API de dispersión

Tenga en cuenta que se utiliza el modelo previamente entrenado.

import tensorflow_model_optimization as tfmot

prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude

pruning_params = {
      'pruning_schedule': tfmot.sparsity.keras.ConstantSparsity(0.5, begin_step=0, frequency=100)
  }

callbacks = [
  tfmot.sparsity.keras.UpdatePruningStep()
]

pruned_model = prune_low_magnitude(model, **pruning_params)

# Use smaller learning rate for fine-tuning
opt = tf.keras.optimizers.Adam(learning_rate=1e-5)

pruned_model.compile(
  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
  optimizer=opt,
  metrics=['accuracy'])
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/base_layer.py:2223: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead.
  warnings.warn('`layer.add_variable` is deprecated and '

Ajuste el modelo, verifique la escasez y evalúe la precisión con respecto a la línea de base

Afina el modelo con una poda de 3 épocas.

# Fine-tune model
pruned_model.fit(
  train_images,
  train_labels,
  epochs=3,
  validation_split=0.1,
  callbacks=callbacks)
2021-09-02 11:15:31.836903: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
Epoch 1/3
1688/1688 [==============================] - 9s 5ms/step - loss: 0.2095 - accuracy: 0.9305 - val_loss: 0.1440 - val_accuracy: 0.9528
Epoch 2/3
1688/1688 [==============================] - 8s 4ms/step - loss: 0.1042 - accuracy: 0.9671 - val_loss: 0.0947 - val_accuracy: 0.9715
Epoch 3/3
1688/1688 [==============================] - 8s 4ms/step - loss: 0.0743 - accuracy: 0.9782 - val_loss: 0.0829 - val_accuracy: 0.9770
<keras.callbacks.History at 0x7f6a81f94250>

Defina funciones auxiliares para calcular e imprimir la escasez y los grupos del modelo.

def print_model_weights_sparsity(model):
    for layer in model.layers:
        if isinstance(layer, tf.keras.layers.Wrapper):
            weights = layer.trainable_weights
        else:
            weights = layer.weights
        for weight in weights:
            if "kernel" not in weight.name or "centroid" in weight.name:
                continue
            weight_size = weight.numpy().size
            zero_num = np.count_nonzero(weight == 0)
            print(
                f"{weight.name}: {zero_num/weight_size:.2%} sparsity ",
                f"({zero_num}/{weight_size})",
            )

def print_model_weight_clusters(model):
    for layer in model.layers:
        if isinstance(layer, tf.keras.layers.Wrapper):
            weights = layer.trainable_weights
        else:
            weights = layer.weights
        for weight in weights:
            # ignore auxiliary quantization weights
            if "quantize_layer" in weight.name:
                continue
            if "kernel" in weight.name:
                unique_count = len(np.unique(weight))
                print(
                    f"{layer.name}/{weight.name}: {unique_count} clusters "
                )

Primero quitemos la envoltura de poda, luego verifiquemos que los granos del modelo se podaron correctamente.

stripped_pruned_model = tfmot.sparsity.keras.strip_pruning(pruned_model)

print_model_weights_sparsity(stripped_pruned_model)
conv2d/kernel:0: 50.00% sparsity  (54/108)
dense/kernel:0: 50.00% sparsity  (10140/20280)

Aplique la dispersión preservando la agrupación en clústeres y verifique su efecto sobre la dispersión del modelo en ambos casos

A continuación, aplique la dispersión preservando la agrupación en el modelo podado y observe el número de agrupaciones y verifique que se conserve la escasez.

import tensorflow_model_optimization as tfmot
from tensorflow_model_optimization.python.core.clustering.keras.experimental import (
    cluster,
)

cluster_weights = tfmot.clustering.keras.cluster_weights
CentroidInitialization = tfmot.clustering.keras.CentroidInitialization

cluster_weights = cluster.cluster_weights

clustering_params = {
  'number_of_clusters': 8,
  'cluster_centroids_init': CentroidInitialization.KMEANS_PLUS_PLUS,
  'preserve_sparsity': True
}

sparsity_clustered_model = cluster_weights(stripped_pruned_model, **clustering_params)

sparsity_clustered_model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

print('Train sparsity preserving clustering model:')
sparsity_clustered_model.fit(train_images, train_labels,epochs=3, validation_split=0.1)
Train sparsity preserving clustering model:
Epoch 1/3
1688/1688 [==============================] - 9s 5ms/step - loss: 0.0495 - accuracy: 0.9847 - val_loss: 0.0611 - val_accuracy: 0.9843
Epoch 2/3
1688/1688 [==============================] - 8s 5ms/step - loss: 0.0472 - accuracy: 0.9855 - val_loss: 0.0705 - val_accuracy: 0.9812
Epoch 3/3
1688/1688 [==============================] - 8s 5ms/step - loss: 0.0463 - accuracy: 0.9846 - val_loss: 0.0796 - val_accuracy: 0.9780
<keras.callbacks.History at 0x7f6a81c10250>

Quite la envoltura de agrupamiento primero, luego verifique que el modelo esté correctamente podado y agrupado.

stripped_clustered_model = tfmot.clustering.keras.strip_clustering(sparsity_clustered_model)

print("Model sparsity:\n")
print_model_weights_sparsity(stripped_clustered_model)

print("\nModel clusters:\n")
print_model_weight_clusters(stripped_clustered_model)
Model sparsity:

kernel:0: 51.85% sparsity  (56/108)
kernel:0: 60.83% sparsity  (12337/20280)

Model clusters:

conv2d/kernel:0: 8 clusters 
dense/kernel:0: 8 clusters

Aplique QAT y PCQAT y verifique el efecto en los grupos de modelos y la dispersión

A continuación, aplique QAT y PCQAT en el modelo de clúster disperso y observe que PCQAT conserva la dispersión de peso y los clústeres en su modelo. Tenga en cuenta que el modelo despojado se pasa a la API de QAT y PCQAT.

# QAT
qat_model = tfmot.quantization.keras.quantize_model(stripped_clustered_model)

qat_model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
print('Train qat model:')
qat_model.fit(train_images, train_labels, batch_size=128, epochs=1, validation_split=0.1)

# PCQAT
quant_aware_annotate_model = tfmot.quantization.keras.quantize_annotate_model(
              stripped_clustered_model)
pcqat_model = tfmot.quantization.keras.quantize_apply(
              quant_aware_annotate_model,
              tfmot.experimental.combine.Default8BitClusterPreserveQuantizeScheme(preserve_sparsity=True))

pcqat_model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
print('Train pcqat model:')
pcqat_model.fit(train_images, train_labels, batch_size=128, epochs=1, validation_split=0.1)
Train qat model:
422/422 [==============================] - 4s 8ms/step - loss: 0.0343 - accuracy: 0.9892 - val_loss: 0.0600 - val_accuracy: 0.9858
Train pcqat model:
WARNING:tensorflow:Gradients do not exist for variables ['conv2d/kernel:0', 'dense/kernel:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['conv2d/kernel:0', 'dense/kernel:0'] when minimizing the loss.
422/422 [==============================] - 4s 8ms/step - loss: 0.0371 - accuracy: 0.9880 - val_loss: 0.0664 - val_accuracy: 0.9832
<keras.callbacks.History at 0x7f6a81792910>
print("QAT Model clusters:")
print_model_weight_clusters(qat_model)
print("\nQAT Model sparsity:")
print_model_weights_sparsity(qat_model)
print("\nPCQAT Model clusters:")
print_model_weight_clusters(pcqat_model)
print("\nPCQAT Model sparsity:")
print_model_weights_sparsity(pcqat_model)
QAT Model clusters:
quant_conv2d/conv2d/kernel:0: 101 clusters 
quant_dense/dense/kernel:0: 18285 clusters 

QAT Model sparsity:
conv2d/kernel:0: 7.41% sparsity  (8/108)
dense/kernel:0: 7.64% sparsity  (1549/20280)

PCQAT Model clusters:
quant_conv2d/conv2d/kernel:0: 8 clusters 
quant_dense/dense/kernel:0: 8 clusters 

PCQAT Model sparsity:
conv2d/kernel:0: 51.85% sparsity  (56/108)
dense/kernel:0: 60.84% sparsity  (12338/20280)

Vea los beneficios de compresión del modelo PCQAT

Defina la función auxiliar para obtener el archivo de modelo comprimido.

def get_gzipped_model_size(file):
  # It returns the size of the gzipped model in kilobytes.

  _, zipped_file = tempfile.mkstemp('.zip')
  with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
    f.write(file)

  return os.path.getsize(zipped_file)/1000

Observe que la aplicación de escasez, agrupamiento y PCQAT a un modelo produce importantes beneficios de compresión.

# QAT model
converter = tf.lite.TFLiteConverter.from_keras_model(qat_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
qat_tflite_model = converter.convert()
qat_model_file = 'qat_model.tflite'
# Save the model.
with open(qat_model_file, 'wb') as f:
    f.write(qat_tflite_model)

# PCQAT model
converter = tf.lite.TFLiteConverter.from_keras_model(pcqat_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
pcqat_tflite_model = converter.convert()
pcqat_model_file = 'pcqat_model.tflite'
# Save the model.
with open(pcqat_model_file, 'wb') as f:
    f.write(pcqat_tflite_model)

print("QAT model size: ", get_gzipped_model_size(qat_model_file), ' KB')
print("PCQAT model size: ", get_gzipped_model_size(pcqat_model_file), ' KB')
WARNING:absl:Found untraced functions such as reshape_layer_call_and_return_conditional_losses, reshape_layer_call_fn, conv2d_layer_call_and_return_conditional_losses, conv2d_layer_call_fn, flatten_layer_call_and_return_conditional_losses while saving (showing 5 of 20). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: /tmp/tmp6_obh00g/assets
INFO:tensorflow:Assets written to: /tmp/tmp6_obh00g/assets
2021-09-02 11:16:32.221664: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-09-02 11:16:32.221712: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.
WARNING:absl:Found untraced functions such as reshape_layer_call_and_return_conditional_losses, reshape_layer_call_fn, conv2d_layer_call_and_return_conditional_losses, conv2d_layer_call_fn, flatten_layer_call_and_return_conditional_losses while saving (showing 5 of 20). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: /tmp/tmpuqqwyk0s/assets
INFO:tensorflow:Assets written to: /tmp/tmpuqqwyk0s/assets
QAT model size:  13.723  KB
PCQAT model size:  7.352  KB
2021-09-02 11:16:33.766310: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-09-02 11:16:33.766350: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.

Vea la persistencia de la precisión de TF a TFLite

Defina una función auxiliar para evaluar el modelo TFLite en el conjunto de datos de prueba.

def eval_model(interpreter):
  input_index = interpreter.get_input_details()[0]["index"]
  output_index = interpreter.get_output_details()[0]["index"]

  # Run predictions on every image in the "test" dataset.
  prediction_digits = []
  for i, test_image in enumerate(test_images):
    if i % 1000 == 0:
      print(f"Evaluated on {i} results so far.")
    # Pre-processing: add batch dimension and convert to float32 to match with
    # the model's input data format.
    test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
    interpreter.set_tensor(input_index, test_image)

    # Run inference.
    interpreter.invoke()

    # Post-processing: remove batch dimension and find the digit with highest
    # probability.
    output = interpreter.tensor(output_index)
    digit = np.argmax(output()[0])
    prediction_digits.append(digit)

  print('\n')
  # Compare prediction results with ground truth labels to calculate accuracy.
  prediction_digits = np.array(prediction_digits)
  accuracy = (prediction_digits == test_labels).mean()
  return accuracy

Evalúe el modelo, que se ha podado, agrupado y cuantificado, y luego observe que la precisión de TensorFlow persiste en el backend de TFLite.

interpreter = tf.lite.Interpreter(pcqat_model_file)
interpreter.allocate_tensors()

pcqat_test_accuracy = eval_model(interpreter)

print('Pruned, clustered and quantized TFLite test_accuracy:', pcqat_test_accuracy)
print('Baseline TF test accuracy:', baseline_model_accuracy)
Evaluated on 0 results so far.
Evaluated on 1000 results so far.
Evaluated on 2000 results so far.
Evaluated on 3000 results so far.
Evaluated on 4000 results so far.
Evaluated on 5000 results so far.
Evaluated on 6000 results so far.
Evaluated on 7000 results so far.
Evaluated on 8000 results so far.
Evaluated on 9000 results so far.


Pruned, clustered and quantized TFLite test_accuracy: 0.9803
Baseline TF test accuracy: 0.9811000227928162

Conclusión

En este tutorial, aprendió a crear un modelo, pode mediante la prune_low_magnitude() de la API, y aplicar escasez preservar la agrupación utilizando los cluster_weights() API para preservar la escasez, mientras que la agrupación de los pesos.

A continuación, se aplicó el entrenamiento consciente de cuantificación de preservación de agrupaciones y escasez (PCQAT) para preservar la escasez de modelos y las agrupaciones mientras se usaba QAT. El modelo PCQAT final se comparó con el modelo QAT para mostrar que la escasez y los conglomerados se conservan en el primero y se pierden en el segundo.

A continuación, los modelos se convirtieron a TFLite para mostrar los beneficios de compresión de encadenar la escasez, la agrupación y las técnicas de optimización del modelo PCQAT, y se evaluó el modelo TFLite para garantizar que la precisión persista en el backend de TFLite.

Finalmente, la precisión del modelo PCQAT TFLite se comparó con la precisión del modelo de referencia previa a la optimización para mostrar que las técnicas de optimización colaborativa lograron lograr los beneficios de la compresión manteniendo una precisión similar en comparación con el modelo original.