O Dia da Comunidade de ML é dia 9 de novembro! Junte-nos para atualização de TensorFlow, JAX, e mais Saiba mais

Treinamento ciente de quantização com preservação de esparsidade e cluster (PCQAT) Exemplo de Keras

Ver no TensorFlow.org Executar no Google Colab Ver no GitHub Baixar caderno

Visão geral

Este é um fim exemplo final mostrando o uso da dispersão e conjunto preservar API quantização ciente formação (PCQAT), parte do pipeline de otimização de colaboração do TensorFlow modelo de otimização do Toolkit.

Outras páginas

Para uma introdução ao gasoduto e outras técnicas disponíveis, consulte a página de visão geral otimização colaborativo .

Conteúdo

No tutorial, você irá:

  1. Treinar um tf.keras modelo para o conjunto de dados MNIST a partir do zero.
  2. Faça o ajuste fino do modelo com poda e veja a precisão e observe se o modelo foi podado com sucesso.
  3. Aplique o agrupamento de preservação de esparsidade no modelo podado e observe que a esparsidade aplicada anteriormente foi preservada.
  4. Aplique QAT e observe a perda de dispersão e clusters.
  5. Aplique o PCQAT e observe se a dispersão e o agrupamento aplicados anteriormente foram preservados.
  6. Gere um modelo TFLite e observe os efeitos da aplicação de PCQAT nele.
  7. Compare os tamanhos dos diferentes modelos para observar os benefícios de compressão da aplicação de esparsidade seguida pelas técnicas de otimização colaborativa de clustering com preservação de esparsidade e PCQAT.
  8. Compare a precisão do modelo totalmente otimizado com a precisão do modelo de linha de base não otimizado.

Configurar

Você pode executar este Notebook Jupyter em seu local de virtualenv ou colab . Para mais detalhes sobre a criação de dependências, consulte o guia de instalação .

 pip install -q tensorflow-model-optimization
import tensorflow as tf

import numpy as np
import tempfile
import zipfile
import os

Treine um modelo tf.keras para MNIST para ser removido e agrupado

# Load MNIST dataset
mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images  = test_images / 255.0

model = tf.keras.Sequential([
  tf.keras.layers.InputLayer(input_shape=(28, 28)),
  tf.keras.layers.Reshape(target_shape=(28, 28, 1)),
  tf.keras.layers.Conv2D(filters=12, kernel_size=(3, 3),
                         activation=tf.nn.relu),
  tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(10)
])

opt = tf.keras.optimizers.Adam(learning_rate=1e-3)

# Train the digit classification model
model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model.fit(
    train_images,
    train_labels,
    validation_split=0.1,
    epochs=10
)
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376/11490434 [==============================] - 0s 0us/step
11501568/11490434 [==============================] - 0s 0us/step
2021-09-02 11:14:14.164834: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
Epoch 1/10
1688/1688 [==============================] - 8s 5ms/step - loss: 0.2842 - accuracy: 0.9215 - val_loss: 0.1078 - val_accuracy: 0.9713
Epoch 2/10
1688/1688 [==============================] - 8s 5ms/step - loss: 0.1110 - accuracy: 0.9684 - val_loss: 0.0773 - val_accuracy: 0.9783
Epoch 3/10
1688/1688 [==============================] - 8s 4ms/step - loss: 0.0821 - accuracy: 0.9760 - val_loss: 0.0676 - val_accuracy: 0.9803
Epoch 4/10
1688/1688 [==============================] - 8s 4ms/step - loss: 0.0684 - accuracy: 0.9799 - val_loss: 0.0600 - val_accuracy: 0.9825
Epoch 5/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0590 - accuracy: 0.9828 - val_loss: 0.0601 - val_accuracy: 0.9838
Epoch 6/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0522 - accuracy: 0.9845 - val_loss: 0.0599 - val_accuracy: 0.9835
Epoch 7/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0472 - accuracy: 0.9863 - val_loss: 0.0544 - val_accuracy: 0.9862
Epoch 8/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0422 - accuracy: 0.9868 - val_loss: 0.0579 - val_accuracy: 0.9848
Epoch 9/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0384 - accuracy: 0.9884 - val_loss: 0.0569 - val_accuracy: 0.9847
Epoch 10/10
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0347 - accuracy: 0.9892 - val_loss: 0.0559 - val_accuracy: 0.9840
<keras.callbacks.History at 0x7f6a8212c550>

Avalie o modelo de linha de base e salve-o para uso posterior

_, baseline_model_accuracy = model.evaluate(
    test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy)

_, keras_file = tempfile.mkstemp('.h5')
print('Saving model to: ', keras_file)
tf.keras.models.save_model(model, keras_file, include_optimizer=False)
Baseline test accuracy: 0.9811000227928162
Saving model to:  /tmp/tmprlekfdwb.h5

Limpe e ajuste o modelo para 50% de dispersão

Aplique o prune_low_magnitude() API para alcançar o modelo podadas que está a ser agrupado na próxima etapa. Consulte o guia completo poda para mais informações sobre a API poda.

Defina o modelo e aplique a API esparsa

Observe que o modelo pré-treinado é usado.

import tensorflow_model_optimization as tfmot

prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude

pruning_params = {
      'pruning_schedule': tfmot.sparsity.keras.ConstantSparsity(0.5, begin_step=0, frequency=100)
  }

callbacks = [
  tfmot.sparsity.keras.UpdatePruningStep()
]

pruned_model = prune_low_magnitude(model, **pruning_params)

# Use smaller learning rate for fine-tuning
opt = tf.keras.optimizers.Adam(learning_rate=1e-5)

pruned_model.compile(
  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
  optimizer=opt,
  metrics=['accuracy'])
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/base_layer.py:2223: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead.
  warnings.warn('`layer.add_variable` is deprecated and '

Ajuste o modelo, verifique a dispersão e avalie a precisão em relação à linha de base

Afine o modelo com poda por 3 épocas.

# Fine-tune model
pruned_model.fit(
  train_images,
  train_labels,
  epochs=3,
  validation_split=0.1,
  callbacks=callbacks)
2021-09-02 11:15:31.836903: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
Epoch 1/3
1688/1688 [==============================] - 9s 5ms/step - loss: 0.2095 - accuracy: 0.9305 - val_loss: 0.1440 - val_accuracy: 0.9528
Epoch 2/3
1688/1688 [==============================] - 8s 4ms/step - loss: 0.1042 - accuracy: 0.9671 - val_loss: 0.0947 - val_accuracy: 0.9715
Epoch 3/3
1688/1688 [==============================] - 8s 4ms/step - loss: 0.0743 - accuracy: 0.9782 - val_loss: 0.0829 - val_accuracy: 0.9770
<keras.callbacks.History at 0x7f6a81f94250>

Defina funções auxiliares para calcular e imprimir a dispersão e os clusters do modelo.

def print_model_weights_sparsity(model):
    for layer in model.layers:
        if isinstance(layer, tf.keras.layers.Wrapper):
            weights = layer.trainable_weights
        else:
            weights = layer.weights
        for weight in weights:
            if "kernel" not in weight.name or "centroid" in weight.name:
                continue
            weight_size = weight.numpy().size
            zero_num = np.count_nonzero(weight == 0)
            print(
                f"{weight.name}: {zero_num/weight_size:.2%} sparsity ",
                f"({zero_num}/{weight_size})",
            )

def print_model_weight_clusters(model):
    for layer in model.layers:
        if isinstance(layer, tf.keras.layers.Wrapper):
            weights = layer.trainable_weights
        else:
            weights = layer.weights
        for weight in weights:
            # ignore auxiliary quantization weights
            if "quantize_layer" in weight.name:
                continue
            if "kernel" in weight.name:
                unique_count = len(np.unique(weight))
                print(
                    f"{layer.name}/{weight.name}: {unique_count} clusters "
                )

Vamos remover o envoltório de poda primeiro e, em seguida, verificar se os kernels do modelo foram podados corretamente.

stripped_pruned_model = tfmot.sparsity.keras.strip_pruning(pruned_model)

print_model_weights_sparsity(stripped_pruned_model)
conv2d/kernel:0: 50.00% sparsity  (54/108)
dense/kernel:0: 50.00% sparsity  (10140/20280)

Aplique clustering de preservação de esparsidade e verifique seu efeito na esparsidade do modelo em ambos os casos

Em seguida, aplique o clustering de preservação de esparsidade no modelo podado e observe o número de clusters e verifique se a esparsidade é preservada.

import tensorflow_model_optimization as tfmot
from tensorflow_model_optimization.python.core.clustering.keras.experimental import (
    cluster,
)

cluster_weights = tfmot.clustering.keras.cluster_weights
CentroidInitialization = tfmot.clustering.keras.CentroidInitialization

cluster_weights = cluster.cluster_weights

clustering_params = {
  'number_of_clusters': 8,
  'cluster_centroids_init': CentroidInitialization.KMEANS_PLUS_PLUS,
  'preserve_sparsity': True
}

sparsity_clustered_model = cluster_weights(stripped_pruned_model, **clustering_params)

sparsity_clustered_model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

print('Train sparsity preserving clustering model:')
sparsity_clustered_model.fit(train_images, train_labels,epochs=3, validation_split=0.1)
Train sparsity preserving clustering model:
Epoch 1/3
1688/1688 [==============================] - 9s 5ms/step - loss: 0.0495 - accuracy: 0.9847 - val_loss: 0.0611 - val_accuracy: 0.9843
Epoch 2/3
1688/1688 [==============================] - 8s 5ms/step - loss: 0.0472 - accuracy: 0.9855 - val_loss: 0.0705 - val_accuracy: 0.9812
Epoch 3/3
1688/1688 [==============================] - 8s 5ms/step - loss: 0.0463 - accuracy: 0.9846 - val_loss: 0.0796 - val_accuracy: 0.9780
<keras.callbacks.History at 0x7f6a81c10250>

Remova o wrapper de armazenamento em cluster primeiro e, em seguida, verifique se o modelo está corretamente removido e em cluster.

stripped_clustered_model = tfmot.clustering.keras.strip_clustering(sparsity_clustered_model)

print("Model sparsity:\n")
print_model_weights_sparsity(stripped_clustered_model)

print("\nModel clusters:\n")
print_model_weight_clusters(stripped_clustered_model)
Model sparsity:

kernel:0: 51.85% sparsity  (56/108)
kernel:0: 60.83% sparsity  (12337/20280)

Model clusters:

conv2d/kernel:0: 8 clusters 
dense/kernel:0: 8 clusters

Aplicar QAT e PCQAT e verificar o efeito em clusters de modelo e dispersão

Em seguida, aplique QAT e PCQAT no modelo de cluster esparso e observe que o PCQAT preserva a dispersão de peso e os clusters em seu modelo. Observe que o modelo simplificado é passado para a API QAT e PCQAT.

# QAT
qat_model = tfmot.quantization.keras.quantize_model(stripped_clustered_model)

qat_model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
print('Train qat model:')
qat_model.fit(train_images, train_labels, batch_size=128, epochs=1, validation_split=0.1)

# PCQAT
quant_aware_annotate_model = tfmot.quantization.keras.quantize_annotate_model(
              stripped_clustered_model)
pcqat_model = tfmot.quantization.keras.quantize_apply(
              quant_aware_annotate_model,
              tfmot.experimental.combine.Default8BitClusterPreserveQuantizeScheme(preserve_sparsity=True))

pcqat_model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
print('Train pcqat model:')
pcqat_model.fit(train_images, train_labels, batch_size=128, epochs=1, validation_split=0.1)
Train qat model:
422/422 [==============================] - 4s 8ms/step - loss: 0.0343 - accuracy: 0.9892 - val_loss: 0.0600 - val_accuracy: 0.9858
Train pcqat model:
WARNING:tensorflow:Gradients do not exist for variables ['conv2d/kernel:0', 'dense/kernel:0'] when minimizing the loss.
WARNING:tensorflow:Gradients do not exist for variables ['conv2d/kernel:0', 'dense/kernel:0'] when minimizing the loss.
422/422 [==============================] - 4s 8ms/step - loss: 0.0371 - accuracy: 0.9880 - val_loss: 0.0664 - val_accuracy: 0.9832
<keras.callbacks.History at 0x7f6a81792910>
print("QAT Model clusters:")
print_model_weight_clusters(qat_model)
print("\nQAT Model sparsity:")
print_model_weights_sparsity(qat_model)
print("\nPCQAT Model clusters:")
print_model_weight_clusters(pcqat_model)
print("\nPCQAT Model sparsity:")
print_model_weights_sparsity(pcqat_model)
QAT Model clusters:
quant_conv2d/conv2d/kernel:0: 101 clusters 
quant_dense/dense/kernel:0: 18285 clusters 

QAT Model sparsity:
conv2d/kernel:0: 7.41% sparsity  (8/108)
dense/kernel:0: 7.64% sparsity  (1549/20280)

PCQAT Model clusters:
quant_conv2d/conv2d/kernel:0: 8 clusters 
quant_dense/dense/kernel:0: 8 clusters 

PCQAT Model sparsity:
conv2d/kernel:0: 51.85% sparsity  (56/108)
dense/kernel:0: 60.84% sparsity  (12338/20280)

Veja os benefícios de compressão do modelo PCQAT

Defina a função auxiliar para obter o arquivo de modelo compactado.

def get_gzipped_model_size(file):
  # It returns the size of the gzipped model in kilobytes.

  _, zipped_file = tempfile.mkstemp('.zip')
  with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
    f.write(file)

  return os.path.getsize(zipped_file)/1000

Observe que a aplicação de dispersão, clustering e PCQAT a um modelo produz benefícios de compressão significativos.

# QAT model
converter = tf.lite.TFLiteConverter.from_keras_model(qat_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
qat_tflite_model = converter.convert()
qat_model_file = 'qat_model.tflite'
# Save the model.
with open(qat_model_file, 'wb') as f:
    f.write(qat_tflite_model)

# PCQAT model
converter = tf.lite.TFLiteConverter.from_keras_model(pcqat_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
pcqat_tflite_model = converter.convert()
pcqat_model_file = 'pcqat_model.tflite'
# Save the model.
with open(pcqat_model_file, 'wb') as f:
    f.write(pcqat_tflite_model)

print("QAT model size: ", get_gzipped_model_size(qat_model_file), ' KB')
print("PCQAT model size: ", get_gzipped_model_size(pcqat_model_file), ' KB')
WARNING:absl:Found untraced functions such as reshape_layer_call_and_return_conditional_losses, reshape_layer_call_fn, conv2d_layer_call_and_return_conditional_losses, conv2d_layer_call_fn, flatten_layer_call_and_return_conditional_losses while saving (showing 5 of 20). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: /tmp/tmp6_obh00g/assets
INFO:tensorflow:Assets written to: /tmp/tmp6_obh00g/assets
2021-09-02 11:16:32.221664: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-09-02 11:16:32.221712: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.
WARNING:absl:Found untraced functions such as reshape_layer_call_and_return_conditional_losses, reshape_layer_call_fn, conv2d_layer_call_and_return_conditional_losses, conv2d_layer_call_fn, flatten_layer_call_and_return_conditional_losses while saving (showing 5 of 20). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: /tmp/tmpuqqwyk0s/assets
INFO:tensorflow:Assets written to: /tmp/tmpuqqwyk0s/assets
QAT model size:  13.723  KB
PCQAT model size:  7.352  KB
2021-09-02 11:16:33.766310: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-09-02 11:16:33.766350: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.

Veja a persistência de precisão de TF para TFLite

Defina uma função auxiliar para avaliar o modelo TFLite no conjunto de dados de teste.

def eval_model(interpreter):
  input_index = interpreter.get_input_details()[0]["index"]
  output_index = interpreter.get_output_details()[0]["index"]

  # Run predictions on every image in the "test" dataset.
  prediction_digits = []
  for i, test_image in enumerate(test_images):
    if i % 1000 == 0:
      print(f"Evaluated on {i} results so far.")
    # Pre-processing: add batch dimension and convert to float32 to match with
    # the model's input data format.
    test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
    interpreter.set_tensor(input_index, test_image)

    # Run inference.
    interpreter.invoke()

    # Post-processing: remove batch dimension and find the digit with highest
    # probability.
    output = interpreter.tensor(output_index)
    digit = np.argmax(output()[0])
    prediction_digits.append(digit)

  print('\n')
  # Compare prediction results with ground truth labels to calculate accuracy.
  prediction_digits = np.array(prediction_digits)
  accuracy = (prediction_digits == test_labels).mean()
  return accuracy

Avalie o modelo, que foi podado, agrupado e quantizado, e veja se a precisão do TensorFlow persiste no back-end TFLite.

interpreter = tf.lite.Interpreter(pcqat_model_file)
interpreter.allocate_tensors()

pcqat_test_accuracy = eval_model(interpreter)

print('Pruned, clustered and quantized TFLite test_accuracy:', pcqat_test_accuracy)
print('Baseline TF test accuracy:', baseline_model_accuracy)
Evaluated on 0 results so far.
Evaluated on 1000 results so far.
Evaluated on 2000 results so far.
Evaluated on 3000 results so far.
Evaluated on 4000 results so far.
Evaluated on 5000 results so far.
Evaluated on 6000 results so far.
Evaluated on 7000 results so far.
Evaluated on 8000 results so far.
Evaluated on 9000 results so far.


Pruned, clustered and quantized TFLite test_accuracy: 0.9803
Baseline TF test accuracy: 0.9811000227928162

Conclusão

Neste tutorial, você aprendeu como criar um modelo, podá-la usando o prune_low_magnitude() API, e aplicar sparsity preservar clusters usando os cluster_weights() API para preservar sparsity enquanto aglomerando os pesos.

Em seguida, o treinamento ciente de quantização com preservação de esparsidade e cluster (PCQAT) foi aplicado para preservar a esparsidade do modelo e os clusters durante o uso de QAT. O modelo final do PCQAT foi comparado ao QAT para mostrar que a esparsidade e os clusters são preservados no primeiro e perdidos no segundo.

Em seguida, os modelos foram convertidos para TFLite para mostrar os benefícios da compressão das técnicas de esparsidade de encadeamento, agrupamento e otimização do modelo PCQAT e o modelo TFLite foi avaliado para garantir que a precisão persiste no backend TFLite.

Finalmente, a precisão do modelo PCQAT TFLite foi comparada à precisão do modelo de linha de base de pré-otimização para mostrar que as técnicas de otimização colaborativa conseguiram alcançar os benefícios de compressão, mantendo uma precisão semelhante em comparação com o modelo original.