Budama kapsamlı kılavuzu

TensorFlow.org'da görüntüleyin Google Colab'da çalıştırın Kaynağı GitHub'da görüntüleyin Defteri indirin

Keras ağırlık budama için kapsamlı kılavuza hoş geldiniz.

Bu sayfa, çeşitli kullanım durumlarını belgeler ve her biri için API'nin nasıl kullanılacağını gösterir. Hangi API'lara ihtiyacınız olduğunu öğrendikten sonra, API belgelerinde parametreleri ve alt düzey ayrıntıları bulun.

Aşağıdaki kullanım durumları kapsanmaktadır:

  • Budanmış bir modeli tanımlayın ve eğitin.
    • Sıralı ve İşlevsel.
    • Keras model.fit ve özel eğitim döngüleri
  • Budanmış bir modeli kontrol edin ve serisini kaldırın.
  • Kısaltılmış bir model dağıtın ve sıkıştırma avantajlarını görün.

Budama algoritmasının yapılandırması için tfmot.sparsity.keras.prune_low_magnitude API belgelerine bakın.

Kurulum

İhtiyaç duyduğunuz API'leri bulmak ve amaçları anlamak için çalıştırabilirsiniz ancak bu bölümü okumayı atlayabilirsiniz.

! pip install -q tensorflow-model-optimization

import tensorflow as tf
import numpy as np
import tensorflow_model_optimization as tfmot

%load_ext tensorboard

import tempfile

input_shape = [20]
x_train = np.random.randn(1, 20).astype(np.float32)
y_train = tf.keras.utils.to_categorical(np.random.randn(1), num_classes=20)

def setup_model():
  model = tf.keras.Sequential([
      tf.keras.layers.Dense(20, input_shape=input_shape),
      tf.keras.layers.Flatten()
  ])
  return model

def setup_pretrained_weights():
  model = setup_model()

  model.compile(
      loss=tf.keras.losses.categorical_crossentropy,
      optimizer='adam',
      metrics=['accuracy']
  )

  model.fit(x_train, y_train)

  _, pretrained_weights = tempfile.mkstemp('.tf')

  model.save_weights(pretrained_weights)

  return pretrained_weights

def get_gzipped_model_size(model):
  # Returns size of gzipped model, in bytes.
  import os
  import zipfile

  _, keras_file = tempfile.mkstemp('.h5')
  model.save(keras_file, include_optimizer=False)

  _, zipped_file = tempfile.mkstemp('.zip')
  with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
    f.write(keras_file)

  return os.path.getsize(zipped_file)

setup_model()
pretrained_weights = setup_pretrained_weights()

Modeli tanımlayın

Tüm modeli budayın (Sıralı ve İşlevsel)

Daha iyi model doğruluğu için ipuçları:

  • Doğruluğu en çok azaltan katmanları budamayı atlamak için "Katmanları budayın" deneyin.
  • Sıfırdan eğitim yerine budama ile ince ayar yapmak genellikle daha iyidir.

Tüm modeli budama ile tfmot.sparsity.keras.prune_low_magnitude için, modele tfmot.sparsity.keras.prune_low_magnitude uygulayın.

base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended.

model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model)

model_for_pruning.summary()
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_model_optimization/python/core/sparsity/keras/pruning_wrapper.py:200: Layer.add_variable (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `layer.add_weight` method instead.
Model: "sequential_2"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
prune_low_magnitude_dense_2  (None, 20)                822       
_________________________________________________________________
prune_low_magnitude_flatten_ (None, 20)                1         
=================================================================
Total params: 823
Trainable params: 420
Non-trainable params: 403
_________________________________________________________________

Bazı katmanları budayın (Sıralı ve İşlevsel)

Bir modeli budamak, doğruluk üzerinde olumsuz bir etkiye sahip olabilir. Doğruluk, hız ve model boyutu arasındaki dengeyi keşfetmek için bir modelin katmanlarını seçerek budayabilirsiniz.

Daha iyi model doğruluğu için ipuçları:

  • Sıfırdan eğitim yerine budama ile ince ayar yapmak genellikle daha iyidir.
  • İlk katmanlar yerine sonraki katmanları budamayı deneyin.
  • Kritik katmanları budamaktan kaçının (örn. Dikkat mekanizması).

Daha fazla :

Aşağıdaki örnekte, yalnızca Dense katmanları Dense .

# Create a base model
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy

# Helper function uses `prune_low_magnitude` to make only the 
# Dense layers train with pruning.
def apply_pruning_to_dense(layer):
  if isinstance(layer, tf.keras.layers.Dense):
    return tfmot.sparsity.keras.prune_low_magnitude(layer)
  return layer

# Use `tf.keras.models.clone_model` to apply `apply_pruning_to_dense` 
# to the layers of the model.
model_for_pruning = tf.keras.models.clone_model(
    base_model,
    clone_function=apply_pruning_to_dense,
)

model_for_pruning.summary()
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.learning_rate
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.bias
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.bias
WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details.
Model: "sequential_3"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
prune_low_magnitude_dense_3  (None, 20)                822       
_________________________________________________________________
flatten_3 (Flatten)          (None, 20)                0         
=================================================================
Total params: 822
Trainable params: 420
Non-trainable params: 402
_________________________________________________________________

Bu örnek, neyin budanacağına karar vermek için katman türünü kullanırken, belirli bir katmanı clone_function en kolay yolu, name özelliğini ayarlamak ve clone_function içinde bu adı clone_function .

print(base_model.layers[0].name)
dense_3

Daha okunabilir ancak potansiyel olarak daha düşük model doğruluğu

Bu, budama ile ince ayar ile uyumlu değildir, bu nedenle ince ayarı destekleyen yukarıdaki örneklerden daha az doğru olabilir.

prune_low_magnitude başlangıç ​​modeli tanımlanırken uygulanabilirken aşağıdaki örneklerde ağırlıkların sonradan yüklenmesi çalışmamaktadır.

İşlevsel örnek

# Use `prune_low_magnitude` to make the `Dense` layer train with pruning.
i = tf.keras.Input(shape=(20,))
x = tfmot.sparsity.keras.prune_low_magnitude(tf.keras.layers.Dense(10))(i)
o = tf.keras.layers.Flatten()(x)
model_for_pruning = tf.keras.Model(inputs=i, outputs=o)

model_for_pruning.summary()
Model: "functional_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 20)]              0         
_________________________________________________________________
prune_low_magnitude_dense_4  (None, 10)                412       
_________________________________________________________________
flatten_4 (Flatten)          (None, 10)                0         
=================================================================
Total params: 412
Trainable params: 210
Non-trainable params: 202
_________________________________________________________________

Sıralı örnek

# Use `prune_low_magnitude` to make the `Dense` layer train with pruning.
model_for_pruning = tf.keras.Sequential([
  tfmot.sparsity.keras.prune_low_magnitude(tf.keras.layers.Dense(20, input_shape=input_shape)),
  tf.keras.layers.Flatten()
])

model_for_pruning.summary()
Model: "sequential_4"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
prune_low_magnitude_dense_5  (None, 20)                822       
_________________________________________________________________
flatten_5 (Flatten)          (None, 20)                0         
=================================================================
Total params: 822
Trainable params: 420
Non-trainable params: 402
_________________________________________________________________

Özel Keras katmanını budayın veya katman parçalarını budamak için değiştirin

Yaygın hata: Önyargıyı budamak genellikle model doğruluğuna çok fazla zarar verir.

tfmot.sparsity.keras.PrunableLayer iki kullanım durumu sunar:

  1. Özel bir Keras katmanını budayın
  2. Yerleşik Keras katmanının parçalarını budamak için değiştirin.

Bir örnek için, API varsayılan olarak yalnızca Dense katmanının çekirdeğini Dense . Aşağıdaki örnek de önyargıyı azaltmaktadır.

class MyDenseLayer(tf.keras.layers.Dense, tfmot.sparsity.keras.PrunableLayer):

  def get_prunable_weights(self):
    # Prune bias also, though that usually harms model accuracy too much.
    return [self.kernel, self.bias]

# Use `prune_low_magnitude` to make the `MyDenseLayer` layer train with pruning.
model_for_pruning = tf.keras.Sequential([
  tfmot.sparsity.keras.prune_low_magnitude(MyDenseLayer(20, input_shape=input_shape)),
  tf.keras.layers.Flatten()
])

model_for_pruning.summary()
Model: "sequential_5"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
prune_low_magnitude_my_dense (None, 20)                843       
_________________________________________________________________
flatten_6 (Flatten)          (None, 20)                0         
=================================================================
Total params: 843
Trainable params: 420
Non-trainable params: 423
_________________________________________________________________

Modeli eğit

Model.fit

Eğitim sırasında tfmot.sparsity.keras.UpdatePruningStep geri tfmot.sparsity.keras.UpdatePruningStep çağırın.

Eğitimde hata ayıklamaya yardımcı olmak için tfmot.sparsity.keras.PruningSummaries geri tfmot.sparsity.keras.PruningSummaries kullanın.

# Define the model.
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model)

log_dir = tempfile.mkdtemp()
callbacks = [
    tfmot.sparsity.keras.UpdatePruningStep(),
    # Log sparsity and other metrics in Tensorboard.
    tfmot.sparsity.keras.PruningSummaries(log_dir=log_dir)
]

model_for_pruning.compile(
      loss=tf.keras.losses.categorical_crossentropy,
      optimizer='adam',
      metrics=['accuracy']
)

model_for_pruning.fit(
    x_train,
    y_train,
    callbacks=callbacks,
    epochs=2,
)

%tensorboard --logdir={log_dir}
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.learning_rate
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.bias
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.bias
WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details.
Epoch 1/2
1/1 [==============================] - 0s 3ms/step - loss: 1.2485 - accuracy: 0.0000e+00
Epoch 2/2
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and will be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.
1/1 [==============================] - 0s 2ms/step - loss: 1.1999 - accuracy: 0.0000e+00

Colab kullanmayan kullanıcılar için, bu kod bloğununbir önceki çalışmasının sonuçlarını TensorBoard.dev'de görebilirsiniz .

Özel eğitim döngüsü

Eğitim sırasında tfmot.sparsity.keras.UpdatePruningStep geri tfmot.sparsity.keras.UpdatePruningStep çağırın.

Eğitimde hata ayıklamaya yardımcı olmak için tfmot.sparsity.keras.PruningSummaries geri tfmot.sparsity.keras.PruningSummaries kullanın.

# Define the model.
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model)

# Boilerplate
loss = tf.keras.losses.categorical_crossentropy
optimizer = tf.keras.optimizers.Adam()
log_dir = tempfile.mkdtemp()
unused_arg = -1
epochs = 2
batches = 1 # example is hardcoded so that the number of batches cannot change.

# Non-boilerplate.
model_for_pruning.optimizer = optimizer
step_callback = tfmot.sparsity.keras.UpdatePruningStep()
step_callback.set_model(model_for_pruning)
log_callback = tfmot.sparsity.keras.PruningSummaries(log_dir=log_dir) # Log sparsity and other metrics in Tensorboard.
log_callback.set_model(model_for_pruning)

step_callback.on_train_begin() # run pruning callback
for _ in range(epochs):
  log_callback.on_epoch_begin(epoch=unused_arg) # run pruning callback
  for _ in range(batches):
    step_callback.on_train_batch_begin(batch=unused_arg) # run pruning callback

    with tf.GradientTape() as tape:
      logits = model_for_pruning(x_train, training=True)
      loss_value = loss(y_train, logits)
      grads = tape.gradient(loss_value, model_for_pruning.trainable_variables)
      optimizer.apply_gradients(zip(grads, model_for_pruning.trainable_variables))

  step_callback.on_epoch_end(batch=unused_arg) # run pruning callback

%tensorboard --logdir={log_dir}
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.learning_rate
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.bias
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.bias
WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details.

Colab kullanmayan kullanıcılar için, bu kod bloğununbir önceki çalışmasının sonuçlarını TensorBoard.dev'de görebilirsiniz .

Budanmış model doğruluğunu iyileştirin

Öncelikle, bir budama çizelgesinin ne olduğunu ve her tür budama çizelgesinin matematiğini anlamak için tfmot.sparsity.keras.prune_low_magnitude API belgelerine bakın.

İpuçları :

  • Model budama yaparken çok yüksek veya çok düşük olmayan bir öğrenme oranına sahip olun. Budama programını bir hiperparametre olarak düşünün.

  • Hızlı bir sınama olarak, ayarlayarak eğitimin başında nihai seyreklik için bir model budama deneme deneyin begin_step bir ile 0'a tfmot.sparsity.keras.ConstantSparsity çizelgesi. İyi sonuçlarla şanslı olabilirsiniz.

  • Modele toparlanması için zaman tanımak için çok sık budamayın. Budama programı , makul bir varsayılan sıklık sağlar.

  • Model doğruluğunu iyileştirmeye yönelik genel fikirler için, "Modeli tanımla" altındaki kullanım alanlarınıza yönelik ipuçlarına bakın.

Kontrol noktası ve seriyi kaldırma

Kontrol noktası oluşturma sırasında optimize edici adımını korumalısınız. Bu, kontrol noktası için Keras HDF5 modellerini kullanabilirken, Keras HDF5 ağırlıklarını kullanamayacağınız anlamına gelir.

# Define the model.
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model)

_, keras_model_file = tempfile.mkstemp('.h5')

# Checkpoint: saving the optimizer is necessary (include_optimizer=True is the default).
model_for_pruning.save(keras_model_file, include_optimizer=True)
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.learning_rate
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.bias
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.bias
WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details.

Yukarıdakiler genel olarak geçerlidir. Aşağıdaki kod yalnızca HDF5 model biçimi için gereklidir (HDF5 ağırlıkları ve diğer biçimler için değil).

# Deserialize model.
with tfmot.sparsity.keras.prune_scope():
  loaded_model = tf.keras.models.load_model(keras_model_file)

loaded_model.summary()
WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.
Model: "sequential_8"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
prune_low_magnitude_dense_8  (None, 20)                822       
_________________________________________________________________
prune_low_magnitude_flatten_ (None, 20)                1         
=================================================================
Total params: 823
Trainable params: 420
Non-trainable params: 403
_________________________________________________________________

Budanmış modeli dağıtın

Modeli boyut sıkıştırmalı dışa aktar

Yaygın hata : hem strip_pruning hem de standart bir sıkıştırma algoritması (örn. Gzip yoluyla) uygulamak, budamanın sıkıştırma avantajlarını görmek için gereklidir.

# Define the model.
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model)

# Typically you train the model here.

model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)

print("final model")
model_for_export.summary()

print("\n")
print("Size of gzipped pruned model without stripping: %.2f bytes" % (get_gzipped_model_size(model_for_pruning)))
print("Size of gzipped pruned model with stripping: %.2f bytes" % (get_gzipped_model_size(model_for_export)))
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.learning_rate
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.bias
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.bias
WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details.
final model
Model: "sequential_9"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_9 (Dense)              (None, 20)                420       
_________________________________________________________________
flatten_10 (Flatten)         (None, 20)                0         
=================================================================
Total params: 420
Trainable params: 420
Non-trainable params: 0
_________________________________________________________________


Size of gzipped pruned model without stripping: 3299.00 bytes
Size of gzipped pruned model with stripping: 2876.00 bytes

Donanıma özel optimizasyonlar

Farklı arka uçlar , kesmeyi gecikmeyi iyileştirmek için etkinleştirdiğinde , blok seyrekliği kullanmak belirli donanımlar için gecikmeyi artırabilir.

Blok boyutunu artırmak, bir hedef model doğruluğu için elde edilebilecek en yüksek seyrekliği azaltacaktır. Buna rağmen, gecikme yine de iyileşebilir.

Blok seyrekliği için nelerin desteklendiğiyle ilgili ayrıntılar için tfmot.sparsity.keras.prune_low_magnitude API belgelerine bakın.

base_model = setup_model()

# For using intrinsics on a CPU with 128-bit registers, together with 8-bit
# quantized weights, a 1x16 block size is nice because the block perfectly
# fits into the register.
pruning_params = {'block_size': [1, 16]}
model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model, **pruning_params)

model_for_pruning.summary()
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.learning_rate
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'm' for (root).layer_with_weights-0.bias
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.kernel
WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer's state 'v' for (root).layer_with_weights-0.bias
WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details.
Model: "sequential_10"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
prune_low_magnitude_dense_10 (None, 20)                822       
_________________________________________________________________
prune_low_magnitude_flatten_ (None, 20)                1         
=================================================================
Total params: 823
Trainable params: 420
Non-trainable params: 403
_________________________________________________________________