![]() | ![]() | ![]() | ![]() |
Visión general
Bienvenido a un ejemplo completo de poda de peso basada en la magnitud.
Otras paginas
Para obtener una introducción a lo que es la poda y para determinar si debe usarla (incluido lo que es compatible), consulte la página de descripción general .
Para encontrar rápidamente las API que necesita para su caso de uso (más allá de podar completamente un modelo con un 80% de dispersión), consulte la guía completa .
Resumen
En este tutorial, podrá:
- Entrenar a un
tf.keras
modelo para MNIST desde cero. - Ajuste el modelo aplicando la API de poda y vea la precisión.
- Cree modelos TF y TFLite 3 veces más pequeños a partir de la poda.
- Cree un modelo TFLite 10 veces más pequeño combinando la poda y la cuantificación posterior al entrenamiento.
- Vea la persistencia de la precisión de TF a TFLite.
Preparar
pip install -q tensorflow-model-optimization
import tempfile
import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
%load_ext tensorboard
Entrene un modelo para MNIST sin podar
# Load MNIST dataset
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images = test_images / 255.0
# Define the model architecture.
model = keras.Sequential([
keras.layers.InputLayer(input_shape=(28, 28)),
keras.layers.Reshape(target_shape=(28, 28, 1)),
keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation='relu'),
keras.layers.MaxPooling2D(pool_size=(2, 2)),
keras.layers.Flatten(),
keras.layers.Dense(10)
])
# Train the digit classification model
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(
train_images,
train_labels,
epochs=4,
validation_split=0.1,
)
Epoch 1/4 1688/1688 [==============================] - 7s 4ms/step - loss: 0.3422 - accuracy: 0.9004 - val_loss: 0.1760 - val_accuracy: 0.9498 Epoch 2/4 1688/1688 [==============================] - 7s 4ms/step - loss: 0.1813 - accuracy: 0.9457 - val_loss: 0.1176 - val_accuracy: 0.9698 Epoch 3/4 1688/1688 [==============================] - 7s 4ms/step - loss: 0.1220 - accuracy: 0.9648 - val_loss: 0.0864 - val_accuracy: 0.9770 Epoch 4/4 1688/1688 [==============================] - 7s 4ms/step - loss: 0.0874 - accuracy: 0.9740 - val_loss: 0.0763 - val_accuracy: 0.9787 <tensorflow.python.keras.callbacks.History at 0x7f32cbeb9550>
Evalúe la precisión de la prueba de referencia y guarde el modelo para su uso posterior.
_, baseline_model_accuracy = model.evaluate(
test_images, test_labels, verbose=0)
print('Baseline test accuracy:', baseline_model_accuracy)
_, keras_file = tempfile.mkstemp('.h5')
tf.keras.models.save_model(model, keras_file, include_optimizer=False)
print('Saved baseline model to:', keras_file)
Baseline test accuracy: 0.972599983215332 Saved baseline model to: /tmp/tmp6quew9ig.h5
Ajuste el modelo previamente entrenado con poda
Definir el modelo
Aplicará la poda a todo el modelo y verá esto en el resumen del modelo.
En este ejemplo, comienza el modelo con un 50% de dispersión (50% de ceros en pesos) y termina con un 80% de dispersión.
En la guía completa , puede ver cómo podar algunas capas para mejorar la precisión del modelo.
import tensorflow_model_optimization as tfmot
prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude
# Compute end step to finish pruning after 2 epochs.
batch_size = 128
epochs = 2
validation_split = 0.1 # 10% of training set will be used for validation set.
num_images = train_images.shape[0] * (1 - validation_split)
end_step = np.ceil(num_images / batch_size).astype(np.int32) * epochs
# Define model for pruning.
pruning_params = {
'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0.50,
final_sparsity=0.80,
begin_step=0,
end_step=end_step)
}
model_for_pruning = prune_low_magnitude(model, **pruning_params)
# `prune_low_magnitude` requires a recompile.
model_for_pruning.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model_for_pruning.summary()
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_model_optimization/python/core/sparsity/keras/pruning_wrapper.py:220: Layer.add_variable (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version. Instructions for updating: Please use `layer.add_weight` method instead. Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= prune_low_magnitude_reshape (None, 28, 28, 1) 1 _________________________________________________________________ prune_low_magnitude_conv2d ( (None, 26, 26, 12) 230 _________________________________________________________________ prune_low_magnitude_max_pool (None, 13, 13, 12) 1 _________________________________________________________________ prune_low_magnitude_flatten (None, 2028) 1 _________________________________________________________________ prune_low_magnitude_dense (P (None, 10) 40572 ================================================================= Total params: 40,805 Trainable params: 20,410 Non-trainable params: 20,395 _________________________________________________________________
Entrene y evalúe el modelo contra la línea de base
Afina con poda por dos épocas.
Se requiere tfmot.sparsity.keras.UpdatePruningStep
durante el entrenamiento y tfmot.sparsity.keras.PruningSummaries
proporciona registros para rastrear el progreso y la depuración.
logdir = tempfile.mkdtemp()
callbacks = [
tfmot.sparsity.keras.UpdatePruningStep(),
tfmot.sparsity.keras.PruningSummaries(log_dir=logdir),
]
model_for_pruning.fit(train_images, train_labels,
batch_size=batch_size, epochs=epochs, validation_split=validation_split,
callbacks=callbacks)
Epoch 1/2 1/422 [..............................] - ETA: 0s - loss: 0.2689 - accuracy: 0.8984WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and will be removed after 2020-07-01. Instructions for updating: use `tf.profiler.experimental.stop` instead. 422/422 [==============================] - 3s 7ms/step - loss: 0.1105 - accuracy: 0.9691 - val_loss: 0.1247 - val_accuracy: 0.9682 Epoch 2/2 422/422 [==============================] - 3s 6ms/step - loss: 0.1197 - accuracy: 0.9667 - val_loss: 0.0969 - val_accuracy: 0.9763 <tensorflow.python.keras.callbacks.History at 0x7f32422a9550>
Para este ejemplo, hay una pérdida mínima en la precisión de la prueba después de la poda, en comparación con la línea base.
_, model_for_pruning_accuracy = model_for_pruning.evaluate(
test_images, test_labels, verbose=0)
print('Baseline test accuracy:', baseline_model_accuracy)
print('Pruned test accuracy:', model_for_pruning_accuracy)
Baseline test accuracy: 0.972599983215332 Pruned test accuracy: 0.9689000248908997
Los registros muestran la progresión de la escasez por capa.
%tensorboard --logdir={logdir}
Para los usuarios que no son de Colab, puede verlos resultados de una ejecución anterior de este bloque de código en TensorBoard.dev .
Crea modelos 3 veces más pequeños a partir de la poda
Tanto tfmot.sparsity.keras.strip_pruning
como la aplicación de un algoritmo de compresión estándar (por ejemplo, a través de gzip) son necesarios para ver los beneficios de compresión de la poda.
-
strip_pruning
es necesario ya que elimina cada tf. Variable que la poda solo necesita durante el entrenamiento, que de otra manera se agregaría al tamaño del modelo durante la inferencia - Es necesario aplicar un algoritmo de compresión estándar ya que las matrices de peso serializadas tienen el mismo tamaño que antes de la poda. Sin embargo, la poda hace que la mayoría de los pesos sean ceros, lo que es una redundancia adicional que los algoritmos pueden utilizar para comprimir aún más el modelo.
Primero, cree un modelo comprimible para TensorFlow.
model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)
_, pruned_keras_file = tempfile.mkstemp('.h5')
tf.keras.models.save_model(model_for_export, pruned_keras_file, include_optimizer=False)
print('Saved pruned Keras model to:', pruned_keras_file)
Saved pruned Keras model to: /tmp/tmpu92n0irx.h5
Luego, cree un modelo comprimible para TFLite.
converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
pruned_tflite_model = converter.convert()
_, pruned_tflite_file = tempfile.mkstemp('.tflite')
with open(pruned_tflite_file, 'wb') as f:
f.write(pruned_tflite_model)
print('Saved pruned TFLite model to:', pruned_tflite_file)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version. Instructions for updating: This property should not be used in TensorFlow 2.0, as updates are applied automatically. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version. Instructions for updating: This property should not be used in TensorFlow 2.0, as updates are applied automatically. INFO:tensorflow:Assets written to: /tmp/tmpunez1uhy/assets Saved pruned TFLite model to: /tmp/tmp9oa2swr6.tflite
Defina una función auxiliar para comprimir realmente los modelos a través de gzip y medir el tamaño comprimido.
def get_gzipped_model_size(file):
# Returns size of gzipped model, in bytes.
import os
import zipfile
_, zipped_file = tempfile.mkstemp('.zip')
with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
f.write(file)
return os.path.getsize(zipped_file)
Compare y vea que los modelos son 3 veces más pequeños después de la poda.
print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped pruned Keras model: %.2f bytes" % (get_gzipped_model_size(pruned_keras_file)))
print("Size of gzipped pruned TFlite model: %.2f bytes" % (get_gzipped_model_size(pruned_tflite_file)))
Size of gzipped baseline Keras model: 78048.00 bytes Size of gzipped pruned Keras model: 25680.00 bytes Size of gzipped pruned TFlite model: 24946.00 bytes
Cree un modelo 10 veces más pequeño combinando poda y cuantificación
Puede aplicar la cuantificación posterior al entrenamiento al modelo podado para obtener beneficios adicionales.
converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
quantized_and_pruned_tflite_model = converter.convert()
_, quantized_and_pruned_tflite_file = tempfile.mkstemp('.tflite')
with open(quantized_and_pruned_tflite_file, 'wb') as f:
f.write(quantized_and_pruned_tflite_model)
print('Saved quantized and pruned TFLite model to:', quantized_and_pruned_tflite_file)
print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped pruned and quantized TFlite model: %.2f bytes" % (get_gzipped_model_size(quantized_and_pruned_tflite_file)))
INFO:tensorflow:Assets written to: /tmp/tmpf68nyuwr/assets INFO:tensorflow:Assets written to: /tmp/tmpf68nyuwr/assets Saved quantized and pruned TFLite model to: /tmp/tmp85dhxupl.tflite Size of gzipped baseline Keras model: 78048.00 bytes Size of gzipped pruned and quantized TFlite model: 7663.00 bytes
Vea la persistencia de la precisión de TF a TFLite
Defina una función auxiliar para evaluar el modelo TF Lite en el conjunto de datos de prueba.
import numpy as np
def evaluate_model(interpreter):
input_index = interpreter.get_input_details()[0]["index"]
output_index = interpreter.get_output_details()[0]["index"]
# Run predictions on ever y image in the "test" dataset.
prediction_digits = []
for i, test_image in enumerate(test_images):
if i % 1000 == 0:
print('Evaluated on {n} results so far.'.format(n=i))
# Pre-processing: add batch dimension and convert to float32 to match with
# the model's input data format.
test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
interpreter.set_tensor(input_index, test_image)
# Run inference.
interpreter.invoke()
# Post-processing: remove batch dimension and find the digit with highest
# probability.
output = interpreter.tensor(output_index)
digit = np.argmax(output()[0])
prediction_digits.append(digit)
print('\n')
# Compare prediction results with ground truth labels to calculate accuracy.
prediction_digits = np.array(prediction_digits)
accuracy = (prediction_digits == test_labels).mean()
return accuracy
Evalúa el modelo podado y cuantificado y ve que la precisión de TensorFlow persiste en el backend de TFLite.
interpreter = tf.lite.Interpreter(model_content=quantized_and_pruned_tflite_model)
interpreter.allocate_tensors()
test_accuracy = evaluate_model(interpreter)
print('Pruned and quantized TFLite test_accuracy:', test_accuracy)
print('Pruned TF test accuracy:', model_for_pruning_accuracy)
Evaluated on 0 results so far. Evaluated on 1000 results so far. Evaluated on 2000 results so far. Evaluated on 3000 results so far. Evaluated on 4000 results so far. Evaluated on 5000 results so far. Evaluated on 6000 results so far. Evaluated on 7000 results so far. Evaluated on 8000 results so far. Evaluated on 9000 results so far. Pruned and quantized TFLite test_accuracy: 0.9692 Pruned TF test accuracy: 0.9689000248908997
Conclusión
En este tutorial, viste cómo crear modelos dispersos con la API del kit de herramientas de optimización de modelos de TensorFlow para TensorFlow y TFLite. Luego combinó la poda con la cuantificación posterior al entrenamiento para obtener beneficios adicionales.
Creó un modelo 10 veces más pequeño para MNIST, con una diferencia de precisión mínima.
Le animamos a que pruebe esta nueva capacidad, que puede ser especialmente importante para la implementación en entornos con recursos limitados.