Questa pagina è stata tradotta dall'API Cloud Translation.
Switch to English

Potatura nell'esempio di Keras

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza sorgente su GitHub Scarica notebook

Panoramica

Benvenuti in un esempio completo per la potatura del peso basata sulla magnitudine.

Altre pagine

Per un'introduzione a cos'è l'eliminazione e per determinare se è necessario utilizzarla (compreso ciò che è supportato), vedere la pagina della panoramica .

Per trovare rapidamente le API di cui hai bisogno per il tuo caso d'uso (oltre allo sfoltimento completo di un modello con l'80% di scarsità), consulta la guida completa .

Sommario

In questo tutorial, dovrai:

  1. Addestrare un tf.keras modello per MNIST da zero.
  2. Ottimizza il modello applicando l'API di potatura e verifica l'accuratezza.
  3. Crea modelli TF e TFLite 3 volte più piccoli dalla potatura.
  4. Crea un modello TFLite 10 volte più piccolo combinando potatura e quantizzazione post-allenamento.
  5. Guarda la persistenza dell'accuratezza da TF a TFLite.

Impostare

 pip install -q tensorflow-model-optimization
WARNING: You are using pip version 20.2.2; however, version 20.2.3 is available.
You should consider upgrading via the '/tmpfs/src/tf_docs_env/bin/python -m pip install --upgrade pip' command.

import tempfile
import os

import tensorflow as tf
import numpy as np

from tensorflow import keras

%load_ext tensorboard

Addestra un modello per MNIST senza potatura

# Load MNIST dataset
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images = test_images / 255.0

# Define the model architecture.
model = keras.Sequential([
  keras.layers.InputLayer(input_shape=(28, 28)),
  keras.layers.Reshape(target_shape=(28, 28, 1)),
  keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation='relu'),
  keras.layers.MaxPooling2D(pool_size=(2, 2)),
  keras.layers.Flatten(),
  keras.layers.Dense(10)
])

# Train the digit classification model
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model.fit(
  train_images,
  train_labels,
  epochs=4,
  validation_split=0.1,
)
Epoch 1/4
1688/1688 [==============================] - 7s 4ms/step - loss: 0.3422 - accuracy: 0.9004 - val_loss: 0.1760 - val_accuracy: 0.9498
Epoch 2/4
1688/1688 [==============================] - 7s 4ms/step - loss: 0.1813 - accuracy: 0.9457 - val_loss: 0.1176 - val_accuracy: 0.9698
Epoch 3/4
1688/1688 [==============================] - 7s 4ms/step - loss: 0.1220 - accuracy: 0.9648 - val_loss: 0.0864 - val_accuracy: 0.9770
Epoch 4/4
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0874 - accuracy: 0.9740 - val_loss: 0.0763 - val_accuracy: 0.9787

<tensorflow.python.keras.callbacks.History at 0x7f32cbeb9550>

Valuta l'accuratezza del test di base e salva il modello per un utilizzo successivo.

_, baseline_model_accuracy = model.evaluate(
    test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy)

_, keras_file = tempfile.mkstemp('.h5')
tf.keras.models.save_model(model, keras_file, include_optimizer=False)
print('Saved baseline model to:', keras_file)
Baseline test accuracy: 0.972599983215332
Saved baseline model to: /tmp/tmp6quew9ig.h5

Metti a punto il modello pre-addestrato con la potatura

Definisci il modello

Applicherai la potatura all'intero modello e lo vedrai nel riepilogo del modello.

In questo esempio, inizi il modello con il 50% di scarsità (50% di zeri nei pesi) e finisci con l'80% di scarsità.

Nella guida completa , puoi vedere come eliminare alcuni livelli per migliorare la precisione del modello.

import tensorflow_model_optimization as tfmot

prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude

# Compute end step to finish pruning after 2 epochs.
batch_size = 128
epochs = 2
validation_split = 0.1 # 10% of training set will be used for validation set. 

num_images = train_images.shape[0] * (1 - validation_split)
end_step = np.ceil(num_images / batch_size).astype(np.int32) * epochs

# Define model for pruning.
pruning_params = {
      'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0.50,
                                                               final_sparsity=0.80,
                                                               begin_step=0,
                                                               end_step=end_step)
}

model_for_pruning = prune_low_magnitude(model, **pruning_params)

# `prune_low_magnitude` requires a recompile.
model_for_pruning.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model_for_pruning.summary()
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_model_optimization/python/core/sparsity/keras/pruning_wrapper.py:220: Layer.add_variable (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `layer.add_weight` method instead.
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
prune_low_magnitude_reshape  (None, 28, 28, 1)         1         
_________________________________________________________________
prune_low_magnitude_conv2d ( (None, 26, 26, 12)        230       
_________________________________________________________________
prune_low_magnitude_max_pool (None, 13, 13, 12)        1         
_________________________________________________________________
prune_low_magnitude_flatten  (None, 2028)              1         
_________________________________________________________________
prune_low_magnitude_dense (P (None, 10)                40572     
=================================================================
Total params: 40,805
Trainable params: 20,410
Non-trainable params: 20,395
_________________________________________________________________

Addestra e valuta il modello rispetto alla linea di base

Sintonia fine con potatura per due epoche.

tfmot.sparsity.keras.UpdatePruningStep è richiesto durante l'addestramento e tfmot.sparsity.keras.PruningSummaries fornisce registri per tenere traccia dell'avanzamento e del debug.

logdir = tempfile.mkdtemp()

callbacks = [
  tfmot.sparsity.keras.UpdatePruningStep(),
  tfmot.sparsity.keras.PruningSummaries(log_dir=logdir),
]

model_for_pruning.fit(train_images, train_labels,
                  batch_size=batch_size, epochs=epochs, validation_split=validation_split,
                  callbacks=callbacks)
Epoch 1/2
  1/422 [..............................] - ETA: 0s - loss: 0.2689 - accuracy: 0.8984WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and will be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.
422/422 [==============================] - 3s 7ms/step - loss: 0.1105 - accuracy: 0.9691 - val_loss: 0.1247 - val_accuracy: 0.9682
Epoch 2/2
422/422 [==============================] - 3s 6ms/step - loss: 0.1197 - accuracy: 0.9667 - val_loss: 0.0969 - val_accuracy: 0.9763

<tensorflow.python.keras.callbacks.History at 0x7f32422a9550>

Per questo esempio, c'è una perdita minima nella precisione del test dopo l'eliminazione, rispetto alla linea di base.

_, model_for_pruning_accuracy = model_for_pruning.evaluate(
   test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy) 
print('Pruned test accuracy:', model_for_pruning_accuracy)
Baseline test accuracy: 0.972599983215332
Pruned test accuracy: 0.9689000248908997

I registri mostrano la progressione della scarsità in base al livello.

%tensorboard --logdir={logdir}

Per gli utenti non Colab, è possibile visualizzarei risultati di una precedente esecuzione di questo blocco di codice su TensorBoard.dev .

Crea modelli 3 volte più piccoli dalla potatura

Sia tfmot.sparsity.keras.strip_pruning che l'applicazione di un algoritmo di compressione standard (ad esempio tramite gzip) sono necessari per vedere i vantaggi di compressione dell'eliminazione.

  • strip_pruning è necessario poiché rimuove ogni tf.Variable di cui la potatura necessita solo durante l'allenamento, che altrimenti si aggiungerebbe alla dimensione del modello durante l'inferenza
  • L'applicazione di un algoritmo di compressione standard è necessario poiché le matrici di peso serializzate hanno le stesse dimensioni di prima della potatura. Tuttavia, l'eliminazione rende la maggior parte dei pesi zero, a cui si aggiunge la ridondanza che gli algoritmi possono utilizzare per comprimere ulteriormente il modello.

Innanzitutto, crea un modello comprimibile per TensorFlow.

model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)

_, pruned_keras_file = tempfile.mkstemp('.h5')
tf.keras.models.save_model(model_for_export, pruned_keras_file, include_optimizer=False)
print('Saved pruned Keras model to:', pruned_keras_file)
Saved pruned Keras model to: /tmp/tmpu92n0irx.h5

Quindi, crea un modello comprimibile per TFLite.

converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
pruned_tflite_model = converter.convert()

_, pruned_tflite_file = tempfile.mkstemp('.tflite')

with open(pruned_tflite_file, 'wb') as f:
  f.write(pruned_tflite_model)

print('Saved pruned TFLite model to:', pruned_tflite_file)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.
INFO:tensorflow:Assets written to: /tmp/tmpunez1uhy/assets
Saved pruned TFLite model to: /tmp/tmp9oa2swr6.tflite

Definisci una funzione di supporto per comprimere effettivamente i modelli tramite gzip e misurare la dimensione zippata.

def get_gzipped_model_size(file):
  # Returns size of gzipped model, in bytes.
  import os
  import zipfile

  _, zipped_file = tempfile.mkstemp('.zip')
  with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
    f.write(file)

  return os.path.getsize(zipped_file)

Confronta e vedi che i modelli sono 3 volte più piccoli dalla potatura.

print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped pruned Keras model: %.2f bytes" % (get_gzipped_model_size(pruned_keras_file)))
print("Size of gzipped pruned TFlite model: %.2f bytes" % (get_gzipped_model_size(pruned_tflite_file)))
Size of gzipped baseline Keras model: 78048.00 bytes
Size of gzipped pruned Keras model: 25680.00 bytes
Size of gzipped pruned TFlite model: 24946.00 bytes

Crea un modello 10 volte più piccolo combinando potatura e quantizzazione

È possibile applicare la quantizzazione post-training al modello ridotto per ulteriori vantaggi.

converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
quantized_and_pruned_tflite_model = converter.convert()

_, quantized_and_pruned_tflite_file = tempfile.mkstemp('.tflite')

with open(quantized_and_pruned_tflite_file, 'wb') as f:
  f.write(quantized_and_pruned_tflite_model)

print('Saved quantized and pruned TFLite model to:', quantized_and_pruned_tflite_file)

print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped pruned and quantized TFlite model: %.2f bytes" % (get_gzipped_model_size(quantized_and_pruned_tflite_file)))
INFO:tensorflow:Assets written to: /tmp/tmpf68nyuwr/assets

INFO:tensorflow:Assets written to: /tmp/tmpf68nyuwr/assets

Saved quantized and pruned TFLite model to: /tmp/tmp85dhxupl.tflite
Size of gzipped baseline Keras model: 78048.00 bytes
Size of gzipped pruned and quantized TFlite model: 7663.00 bytes

Vedere la persistenza dell'accuratezza da TF a TFLite

Definire una funzione di supporto per valutare il modello TF Lite sul set di dati di test.

import numpy as np

def evaluate_model(interpreter):
  input_index = interpreter.get_input_details()[0]["index"]
  output_index = interpreter.get_output_details()[0]["index"]

  # Run predictions on ever y image in the "test" dataset.
  prediction_digits = []
  for i, test_image in enumerate(test_images):
    if i % 1000 == 0:
      print('Evaluated on {n} results so far.'.format(n=i))
    # Pre-processing: add batch dimension and convert to float32 to match with
    # the model's input data format.
    test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
    interpreter.set_tensor(input_index, test_image)

    # Run inference.
    interpreter.invoke()

    # Post-processing: remove batch dimension and find the digit with highest
    # probability.
    output = interpreter.tensor(output_index)
    digit = np.argmax(output()[0])
    prediction_digits.append(digit)

  print('\n')
  # Compare prediction results with ground truth labels to calculate accuracy.
  prediction_digits = np.array(prediction_digits)
  accuracy = (prediction_digits == test_labels).mean()
  return accuracy

Valuta il modello ridotto e quantizzato e vedi che la precisione da TensorFlow persiste nel back-end TFLite.

interpreter = tf.lite.Interpreter(model_content=quantized_and_pruned_tflite_model)
interpreter.allocate_tensors()

test_accuracy = evaluate_model(interpreter)

print('Pruned and quantized TFLite test_accuracy:', test_accuracy)
print('Pruned TF test accuracy:', model_for_pruning_accuracy)
Evaluated on 0 results so far.
Evaluated on 1000 results so far.
Evaluated on 2000 results so far.
Evaluated on 3000 results so far.
Evaluated on 4000 results so far.
Evaluated on 5000 results so far.
Evaluated on 6000 results so far.
Evaluated on 7000 results so far.
Evaluated on 8000 results so far.
Evaluated on 9000 results so far.


Pruned and quantized TFLite test_accuracy: 0.9692
Pruned TF test accuracy: 0.9689000248908997

Conclusione

In questo tutorial, hai visto come creare modelli sparsi con l'API TensorFlow Model Optimization Toolkit per TensorFlow e TFLite. Hai quindi combinato la potatura con la quantizzazione post-allenamento per ulteriori vantaggi.

Hai creato un modello 10 volte più piccolo per MNIST, con una differenza di precisione minima.

Ti invitiamo a provare questa nuova funzionalità, che può essere particolarmente importante per la distribuzione in ambienti con risorse limitate.