Ta strona została przetłumaczona przez Cloud Translation API.
Switch to English

Przycinanie w przykładzie Keras

Zobacz na TensorFlow.org Uruchom w Google Colab Wyświetl źródło na GitHub Pobierz notatnik

Przegląd

Witamy w kompleksowym przykładzie przycinania według wielkości.

Inne strony

Wprowadzenie do tego, czym jest przycinanie i określenie, czy należy go używać (w tym obsługiwane), znajduje się na stronie przeglądu .

Aby szybko znaleźć interfejsy API potrzebne do swojego przypadku użycia (poza całkowitym przycięciem modelu z 80% rzadkością), zapoznaj się z obszernym przewodnikiem .

Podsumowanie

W tym samouczku:

  1. Pociąg tf.keras model MNIST od zera.
  2. Dostrój model, stosując interfejs API do przycinania i zobacz dokładność.
  3. Twórz 3x mniejsze modele TF i TFLite z przycinania.
  4. Utwórz 10-krotnie mniejszy model TFLite, łącząc przycinanie i kwantyzację potreningową.
  5. Zobacz trwałość dokładności od TF do TFLite.

Ustawiać

 pip install -q tensorflow-model-optimization
WARNING: You are using pip version 20.2.2; however, version 20.2.3 is available.
You should consider upgrading via the '/tmpfs/src/tf_docs_env/bin/python -m pip install --upgrade pip' command.

import tempfile
import os

import tensorflow as tf
import numpy as np

from tensorflow import keras

%load_ext tensorboard

Wytrenuj model dla MNIST bez przycinania

# Load MNIST dataset
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images = test_images / 255.0

# Define the model architecture.
model = keras.Sequential([
  keras.layers.InputLayer(input_shape=(28, 28)),
  keras.layers.Reshape(target_shape=(28, 28, 1)),
  keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation='relu'),
  keras.layers.MaxPooling2D(pool_size=(2, 2)),
  keras.layers.Flatten(),
  keras.layers.Dense(10)
])

# Train the digit classification model
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model.fit(
  train_images,
  train_labels,
  epochs=4,
  validation_split=0.1,
)
Epoch 1/4
1688/1688 [==============================] - 7s 4ms/step - loss: 0.3422 - accuracy: 0.9004 - val_loss: 0.1760 - val_accuracy: 0.9498
Epoch 2/4
1688/1688 [==============================] - 7s 4ms/step - loss: 0.1813 - accuracy: 0.9457 - val_loss: 0.1176 - val_accuracy: 0.9698
Epoch 3/4
1688/1688 [==============================] - 7s 4ms/step - loss: 0.1220 - accuracy: 0.9648 - val_loss: 0.0864 - val_accuracy: 0.9770
Epoch 4/4
1688/1688 [==============================] - 7s 4ms/step - loss: 0.0874 - accuracy: 0.9740 - val_loss: 0.0763 - val_accuracy: 0.9787

<tensorflow.python.keras.callbacks.History at 0x7f32cbeb9550>

Oceń podstawową dokładność testu i zapisz model do późniejszego wykorzystania.

_, baseline_model_accuracy = model.evaluate(
    test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy)

_, keras_file = tempfile.mkstemp('.h5')
tf.keras.models.save_model(model, keras_file, include_optimizer=False)
print('Saved baseline model to:', keras_file)
Baseline test accuracy: 0.972599983215332
Saved baseline model to: /tmp/tmp6quew9ig.h5

Dostrój wstępnie wytrenowany model z przycinaniem

Zdefiniuj model

Zastosujesz przycinanie do całego modelu i zobaczysz to w podsumowaniu modelu.

W tym przykładzie zaczynasz model z 50% rzadkością (50% zer w wagach) i kończysz z 80% rzadkością.

W obszernym przewodniku można zobaczyć, jak przycinać niektóre warstwy w celu poprawy dokładności modelu.

import tensorflow_model_optimization as tfmot

prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude

# Compute end step to finish pruning after 2 epochs.
batch_size = 128
epochs = 2
validation_split = 0.1 # 10% of training set will be used for validation set. 

num_images = train_images.shape[0] * (1 - validation_split)
end_step = np.ceil(num_images / batch_size).astype(np.int32) * epochs

# Define model for pruning.
pruning_params = {
      'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0.50,
                                                               final_sparsity=0.80,
                                                               begin_step=0,
                                                               end_step=end_step)
}

model_for_pruning = prune_low_magnitude(model, **pruning_params)

# `prune_low_magnitude` requires a recompile.
model_for_pruning.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model_for_pruning.summary()
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_model_optimization/python/core/sparsity/keras/pruning_wrapper.py:220: Layer.add_variable (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `layer.add_weight` method instead.
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
prune_low_magnitude_reshape  (None, 28, 28, 1)         1         
_________________________________________________________________
prune_low_magnitude_conv2d ( (None, 26, 26, 12)        230       
_________________________________________________________________
prune_low_magnitude_max_pool (None, 13, 13, 12)        1         
_________________________________________________________________
prune_low_magnitude_flatten  (None, 2028)              1         
_________________________________________________________________
prune_low_magnitude_dense (P (None, 10)                40572     
=================================================================
Total params: 40,805
Trainable params: 20,410
Non-trainable params: 20,395
_________________________________________________________________

Trenuj i oceniaj model w stosunku do linii bazowej

Dostrój dzięki przycinaniu przez dwie epoki.

tfmot.sparsity.keras.UpdatePruningStep jest wymagany podczas szkolenia, a tfmot.sparsity.keras.PruningSummaries udostępnia dzienniki do śledzenia postępu i debugowania.

logdir = tempfile.mkdtemp()

callbacks = [
  tfmot.sparsity.keras.UpdatePruningStep(),
  tfmot.sparsity.keras.PruningSummaries(log_dir=logdir),
]
  
model_for_pruning.fit(train_images, train_labels,
                  batch_size=batch_size, epochs=epochs, validation_split=validation_split,
                  callbacks=callbacks)
Epoch 1/2
  1/422 [..............................] - ETA: 0s - loss: 0.2689 - accuracy: 0.8984WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and will be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.
422/422 [==============================] - 3s 7ms/step - loss: 0.1105 - accuracy: 0.9691 - val_loss: 0.1247 - val_accuracy: 0.9682
Epoch 2/2
422/422 [==============================] - 3s 6ms/step - loss: 0.1197 - accuracy: 0.9667 - val_loss: 0.0969 - val_accuracy: 0.9763

<tensorflow.python.keras.callbacks.History at 0x7f32422a9550>

W tym przykładzie po przycięciu występuje minimalna utrata dokładności testu w porównaniu z linią bazową.

_, model_for_pruning_accuracy = model_for_pruning.evaluate(
   test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy) 
print('Pruned test accuracy:', model_for_pruning_accuracy)
Baseline test accuracy: 0.972599983215332
Pruned test accuracy: 0.9689000248908997

Dzienniki pokazują postęp rzadkości w poszczególnych warstwach.

%tensorboard --logdir={logdir}

W przypadku użytkowników innych niż Colab możesz zobaczyć wyniki poprzedniego uruchomienia tego bloku kodu na TensorBoard.dev .

Twórz 3x mniejsze modele z przycinania

Zarówno tfmot.sparsity.keras.strip_pruning jak i zastosowanie standardowego algorytmu kompresji (np. Przez gzip) są niezbędne, aby zobaczyć korzyści kompresji wynikające z przycinania.

  • strip_pruning jest konieczne, ponieważ usuwa wszystkie tf. Zmienna, której przycinanie wymaga tylko podczas uczenia, co w przeciwnym razie zwiększyłoby rozmiar modelu podczas wnioskowania
  • Zastosowanie standardowego algorytmu kompresji jest konieczne, ponieważ serializowane macierze wag mają taki sam rozmiar, jak przed przycinaniem. Jednak przycinanie powoduje, że większość wag wynosi zero, co jest dodatkową redundancją, którą algorytmy mogą wykorzystać do dalszej kompresji modelu.

Najpierw utwórz kompresowalny model dla TensorFlow.

model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)

_, pruned_keras_file = tempfile.mkstemp('.h5')
tf.keras.models.save_model(model_for_export, pruned_keras_file, include_optimizer=False)
print('Saved pruned Keras model to:', pruned_keras_file)
Saved pruned Keras model to: /tmp/tmpu92n0irx.h5

Następnie utwórz kompresowalny model dla TFLite.

converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
pruned_tflite_model = converter.convert()

_, pruned_tflite_file = tempfile.mkstemp('.tflite')

with open(pruned_tflite_file, 'wb') as f:
  f.write(pruned_tflite_model)

print('Saved pruned TFLite model to:', pruned_tflite_file)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.
INFO:tensorflow:Assets written to: /tmp/tmpunez1uhy/assets
Saved pruned TFLite model to: /tmp/tmp9oa2swr6.tflite

Zdefiniuj funkcję pomocniczą, aby faktycznie kompresować modele za pomocą programu gzip i mierzyć rozmiar spakowanego pliku.

def get_gzipped_model_size(file):
  # Returns size of gzipped model, in bytes.
  import os
  import zipfile

  _, zipped_file = tempfile.mkstemp('.zip')
  with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
    f.write(file)

  return os.path.getsize(zipped_file)

Porównaj i zobacz, że modele są 3 razy mniejsze od przycinania.

print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped pruned Keras model: %.2f bytes" % (get_gzipped_model_size(pruned_keras_file)))
print("Size of gzipped pruned TFlite model: %.2f bytes" % (get_gzipped_model_size(pruned_tflite_file)))
Size of gzipped baseline Keras model: 78048.00 bytes
Size of gzipped pruned Keras model: 25680.00 bytes
Size of gzipped pruned TFlite model: 24946.00 bytes

Utwórz 10-krotnie mniejszy model, łącząc przycinanie i kwantyzację

Możesz zastosować kwantyzację po treningu do przyciętego modelu, aby uzyskać dodatkowe korzyści.

converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
quantized_and_pruned_tflite_model = converter.convert()

_, quantized_and_pruned_tflite_file = tempfile.mkstemp('.tflite')

with open(quantized_and_pruned_tflite_file, 'wb') as f:
  f.write(quantized_and_pruned_tflite_model)

print('Saved quantized and pruned TFLite model to:', quantized_and_pruned_tflite_file)

print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped pruned and quantized TFlite model: %.2f bytes" % (get_gzipped_model_size(quantized_and_pruned_tflite_file)))
INFO:tensorflow:Assets written to: /tmp/tmpf68nyuwr/assets

INFO:tensorflow:Assets written to: /tmp/tmpf68nyuwr/assets

Saved quantized and pruned TFLite model to: /tmp/tmp85dhxupl.tflite
Size of gzipped baseline Keras model: 78048.00 bytes
Size of gzipped pruned and quantized TFlite model: 7663.00 bytes

Zobacz trwałość dokładności od TF do TFLite

Zdefiniuj funkcję pomocniczą do oceny modelu TF Lite na testowym zestawie danych.

import numpy as np

def evaluate_model(interpreter):
  input_index = interpreter.get_input_details()[0]["index"]
  output_index = interpreter.get_output_details()[0]["index"]

  # Run predictions on ever y image in the "test" dataset.
  prediction_digits = []
  for i, test_image in enumerate(test_images):
    if i % 1000 == 0:
      print('Evaluated on {n} results so far.'.format(n=i))
    # Pre-processing: add batch dimension and convert to float32 to match with
    # the model's input data format.
    test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
    interpreter.set_tensor(input_index, test_image)

    # Run inference.
    interpreter.invoke()

    # Post-processing: remove batch dimension and find the digit with highest
    # probability.
    output = interpreter.tensor(output_index)
    digit = np.argmax(output()[0])
    prediction_digits.append(digit)

  print('\n')
  # Compare prediction results with ground truth labels to calculate accuracy.
  prediction_digits = np.array(prediction_digits)
  accuracy = (prediction_digits == test_labels).mean()
  return accuracy

Oceniasz przycięty i skwantyzowany model i widzisz, że dokładność z TensorFlow jest zachowana dla zaplecza TFLite.

interpreter = tf.lite.Interpreter(model_content=quantized_and_pruned_tflite_model)
interpreter.allocate_tensors()

test_accuracy = evaluate_model(interpreter)

print('Pruned and quantized TFLite test_accuracy:', test_accuracy)
print('Pruned TF test accuracy:', model_for_pruning_accuracy)
Evaluated on 0 results so far.
Evaluated on 1000 results so far.
Evaluated on 2000 results so far.
Evaluated on 3000 results so far.
Evaluated on 4000 results so far.
Evaluated on 5000 results so far.
Evaluated on 6000 results so far.
Evaluated on 7000 results so far.
Evaluated on 8000 results so far.
Evaluated on 9000 results so far.


Pruned and quantized TFLite test_accuracy: 0.9692
Pruned TF test accuracy: 0.9689000248908997

Wniosek

W tym samouczku pokazano, jak tworzyć rzadkie modele za pomocą TensorFlow Model Optimization Toolkit API zarówno dla TensorFlow, jak i TFLite. Następnie połączyłeś przycinanie z kwantyzacją po treningu, aby uzyskać dodatkowe korzyści.

Utworzyłeś 10x mniejszy model dla MNIST, z minimalną różnicą dokładności.

Zachęcamy do wypróbowania tej nowej możliwości, która może być szczególnie ważna w przypadku wdrażania w środowiskach o ograniczonych zasobach.