![]() | ![]() | ![]() | ![]() |
Visão geral
Bem-vindo a um exemplo de ponta a ponta para poda de peso baseada em magnitude.
Outras páginas
Para uma introdução ao que é poda e para determinar se você deve usá-la (incluindo o que é compatível), consulte a página de visão geral .
Para encontrar rapidamente as APIs de que você precisa para seu caso de uso (além de limpar totalmente um modelo com 80% de dispersão), consulte o guia completo .
Resumo
Neste tutorial, você irá:
- Treine um modelo
tf.keras
para MNIST do zero. - Ajuste o modelo aplicando a API de poda e veja a precisão.
- Crie modelos TF e TFLite 3x menores a partir da poda.
- Crie um modelo TFLite 10x menor combinando poda e quantização pós-treinamento.
- Veja a persistência da precisão de TF a TFLite.
Configuração
pip install -q tensorflow-model-optimization
import tempfile
import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
%load_ext tensorboard
Treine um modelo para MNIST sem poda
# Load MNIST dataset
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images = test_images / 255.0
# Define the model architecture.
model = keras.Sequential([
keras.layers.InputLayer(input_shape=(28, 28)),
keras.layers.Reshape(target_shape=(28, 28, 1)),
keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation='relu'),
keras.layers.MaxPooling2D(pool_size=(2, 2)),
keras.layers.Flatten(),
keras.layers.Dense(10)
])
# Train the digit classification model
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(
train_images,
train_labels,
epochs=4,
validation_split=0.1,
)
Epoch 1/4 1688/1688 [==============================] - 7s 4ms/step - loss: 0.3422 - accuracy: 0.9004 - val_loss: 0.1760 - val_accuracy: 0.9498 Epoch 2/4 1688/1688 [==============================] - 7s 4ms/step - loss: 0.1813 - accuracy: 0.9457 - val_loss: 0.1176 - val_accuracy: 0.9698 Epoch 3/4 1688/1688 [==============================] - 7s 4ms/step - loss: 0.1220 - accuracy: 0.9648 - val_loss: 0.0864 - val_accuracy: 0.9770 Epoch 4/4 1688/1688 [==============================] - 7s 4ms/step - loss: 0.0874 - accuracy: 0.9740 - val_loss: 0.0763 - val_accuracy: 0.9787 <tensorflow.python.keras.callbacks.History at 0x7f32cbeb9550>
Avalie a precisão do teste de linha de base e salve o modelo para uso posterior.
_, baseline_model_accuracy = model.evaluate(
test_images, test_labels, verbose=0)
print('Baseline test accuracy:', baseline_model_accuracy)
_, keras_file = tempfile.mkstemp('.h5')
tf.keras.models.save_model(model, keras_file, include_optimizer=False)
print('Saved baseline model to:', keras_file)
Baseline test accuracy: 0.972599983215332 Saved baseline model to: /tmp/tmp6quew9ig.h5
Modelo pré-treinado de ajuste fino com poda
Defina o modelo
Você aplicará a poda a todo o modelo e verá isso no resumo do modelo.
Neste exemplo, você inicia o modelo com 50% de esparsidade (50% zeros em pesos) e termina com 80% de esparsidade.
No guia completo , você pode ver como podar algumas camadas para melhorar a precisão do modelo.
import tensorflow_model_optimization as tfmot
prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude
# Compute end step to finish pruning after 2 epochs.
batch_size = 128
epochs = 2
validation_split = 0.1 # 10% of training set will be used for validation set.
num_images = train_images.shape[0] * (1 - validation_split)
end_step = np.ceil(num_images / batch_size).astype(np.int32) * epochs
# Define model for pruning.
pruning_params = {
'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0.50,
final_sparsity=0.80,
begin_step=0,
end_step=end_step)
}
model_for_pruning = prune_low_magnitude(model, **pruning_params)
# `prune_low_magnitude` requires a recompile.
model_for_pruning.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model_for_pruning.summary()
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_model_optimization/python/core/sparsity/keras/pruning_wrapper.py:220: Layer.add_variable (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version. Instructions for updating: Please use `layer.add_weight` method instead. Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= prune_low_magnitude_reshape (None, 28, 28, 1) 1 _________________________________________________________________ prune_low_magnitude_conv2d ( (None, 26, 26, 12) 230 _________________________________________________________________ prune_low_magnitude_max_pool (None, 13, 13, 12) 1 _________________________________________________________________ prune_low_magnitude_flatten (None, 2028) 1 _________________________________________________________________ prune_low_magnitude_dense (P (None, 10) 40572 ================================================================= Total params: 40,805 Trainable params: 20,410 Non-trainable params: 20,395 _________________________________________________________________
Treine e avalie o modelo em relação à linha de base
Sintonia fina com poda para duas épocas.
tfmot.sparsity.keras.UpdatePruningStep
é necessário durante o treinamento e tfmot.sparsity.keras.PruningSummaries
fornece logs para rastrear o progresso e depuração.
logdir = tempfile.mkdtemp()
callbacks = [
tfmot.sparsity.keras.UpdatePruningStep(),
tfmot.sparsity.keras.PruningSummaries(log_dir=logdir),
]
model_for_pruning.fit(train_images, train_labels,
batch_size=batch_size, epochs=epochs, validation_split=validation_split,
callbacks=callbacks)
Epoch 1/2 1/422 [..............................] - ETA: 0s - loss: 0.2689 - accuracy: 0.8984WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and will be removed after 2020-07-01. Instructions for updating: use `tf.profiler.experimental.stop` instead. 422/422 [==============================] - 3s 7ms/step - loss: 0.1105 - accuracy: 0.9691 - val_loss: 0.1247 - val_accuracy: 0.9682 Epoch 2/2 422/422 [==============================] - 3s 6ms/step - loss: 0.1197 - accuracy: 0.9667 - val_loss: 0.0969 - val_accuracy: 0.9763 <tensorflow.python.keras.callbacks.History at 0x7f32422a9550>
Para este exemplo, há uma perda mínima na precisão do teste após a poda, em comparação com a linha de base.
_, model_for_pruning_accuracy = model_for_pruning.evaluate(
test_images, test_labels, verbose=0)
print('Baseline test accuracy:', baseline_model_accuracy)
print('Pruned test accuracy:', model_for_pruning_accuracy)
Baseline test accuracy: 0.972599983215332 Pruned test accuracy: 0.9689000248908997
Os registros mostram a progressão da dispersão em uma base por camada.
%tensorboard --logdir={logdir}
Para não usuários do Colab, você pode veros resultados de uma execução anterior deste bloco de código em TensorBoard.dev .
Crie modelos 3x menores a partir da poda
Tanto o tfmot.sparsity.keras.strip_pruning
quanto a aplicação de um algoritmo de compressão padrão (por exemplo, via gzip) são necessários para ver os benefícios da compressão da poda.
-
strip_pruning
é necessário, pois remove cada tf. Variável que a poda só precisa durante o treinamento, o que, de outra forma, aumentaria o tamanho do modelo durante a inferência - É necessário aplicar um algoritmo de compactação padrão, pois as matrizes de peso serializadas têm o mesmo tamanho de antes da poda. No entanto, a poda torna a maioria dos pesos zeros, o que é adicionado à redundância que os algoritmos podem utilizar para comprimir ainda mais o modelo.
Primeiro, crie um modelo compactável para TensorFlow.
model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)
_, pruned_keras_file = tempfile.mkstemp('.h5')
tf.keras.models.save_model(model_for_export, pruned_keras_file, include_optimizer=False)
print('Saved pruned Keras model to:', pruned_keras_file)
Saved pruned Keras model to: /tmp/tmpu92n0irx.h5
Em seguida, crie um modelo compactável para TFLite.
converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
pruned_tflite_model = converter.convert()
_, pruned_tflite_file = tempfile.mkstemp('.tflite')
with open(pruned_tflite_file, 'wb') as f:
f.write(pruned_tflite_model)
print('Saved pruned TFLite model to:', pruned_tflite_file)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version. Instructions for updating: This property should not be used in TensorFlow 2.0, as updates are applied automatically. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py:111: Layer.updates (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version. Instructions for updating: This property should not be used in TensorFlow 2.0, as updates are applied automatically. INFO:tensorflow:Assets written to: /tmp/tmpunez1uhy/assets Saved pruned TFLite model to: /tmp/tmp9oa2swr6.tflite
Defina uma função auxiliar para realmente compactar os modelos via gzip e medir o tamanho compactado.
def get_gzipped_model_size(file):
# Returns size of gzipped model, in bytes.
import os
import zipfile
_, zipped_file = tempfile.mkstemp('.zip')
with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
f.write(file)
return os.path.getsize(zipped_file)
Compare e veja que os modelos são 3x menores com a poda.
print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped pruned Keras model: %.2f bytes" % (get_gzipped_model_size(pruned_keras_file)))
print("Size of gzipped pruned TFlite model: %.2f bytes" % (get_gzipped_model_size(pruned_tflite_file)))
Size of gzipped baseline Keras model: 78048.00 bytes Size of gzipped pruned Keras model: 25680.00 bytes Size of gzipped pruned TFlite model: 24946.00 bytes
Crie um modelo 10x menor combinando poda e quantização
Você pode aplicar a quantização pós-treinamento ao modelo podado para obter benefícios adicionais.
converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
quantized_and_pruned_tflite_model = converter.convert()
_, quantized_and_pruned_tflite_file = tempfile.mkstemp('.tflite')
with open(quantized_and_pruned_tflite_file, 'wb') as f:
f.write(quantized_and_pruned_tflite_model)
print('Saved quantized and pruned TFLite model to:', quantized_and_pruned_tflite_file)
print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped pruned and quantized TFlite model: %.2f bytes" % (get_gzipped_model_size(quantized_and_pruned_tflite_file)))
INFO:tensorflow:Assets written to: /tmp/tmpf68nyuwr/assets INFO:tensorflow:Assets written to: /tmp/tmpf68nyuwr/assets Saved quantized and pruned TFLite model to: /tmp/tmp85dhxupl.tflite Size of gzipped baseline Keras model: 78048.00 bytes Size of gzipped pruned and quantized TFlite model: 7663.00 bytes
Veja a persistência de precisão de TF para TFLite
Defina uma função auxiliar para avaliar o modelo TF Lite no conjunto de dados de teste.
import numpy as np
def evaluate_model(interpreter):
input_index = interpreter.get_input_details()[0]["index"]
output_index = interpreter.get_output_details()[0]["index"]
# Run predictions on ever y image in the "test" dataset.
prediction_digits = []
for i, test_image in enumerate(test_images):
if i % 1000 == 0:
print('Evaluated on {n} results so far.'.format(n=i))
# Pre-processing: add batch dimension and convert to float32 to match with
# the model's input data format.
test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
interpreter.set_tensor(input_index, test_image)
# Run inference.
interpreter.invoke()
# Post-processing: remove batch dimension and find the digit with highest
# probability.
output = interpreter.tensor(output_index)
digit = np.argmax(output()[0])
prediction_digits.append(digit)
print('\n')
# Compare prediction results with ground truth labels to calculate accuracy.
prediction_digits = np.array(prediction_digits)
accuracy = (prediction_digits == test_labels).mean()
return accuracy
Você avalia o modelo podado e quantizado e vê que a precisão do TensorFlow persiste no back-end TFLite.
interpreter = tf.lite.Interpreter(model_content=quantized_and_pruned_tflite_model)
interpreter.allocate_tensors()
test_accuracy = evaluate_model(interpreter)
print('Pruned and quantized TFLite test_accuracy:', test_accuracy)
print('Pruned TF test accuracy:', model_for_pruning_accuracy)
Evaluated on 0 results so far. Evaluated on 1000 results so far. Evaluated on 2000 results so far. Evaluated on 3000 results so far. Evaluated on 4000 results so far. Evaluated on 5000 results so far. Evaluated on 6000 results so far. Evaluated on 7000 results so far. Evaluated on 8000 results so far. Evaluated on 9000 results so far. Pruned and quantized TFLite test_accuracy: 0.9692 Pruned TF test accuracy: 0.9689000248908997
Conclusão
Neste tutorial, você viu como criar modelos esparsos com a API TensorFlow Model Optimization Toolkit para TensorFlow e TFLite. Em seguida, você combinou a poda com a quantização pós-treinamento para obter benefícios adicionais.
Você criou um modelo 10x menor para MNIST, com diferença mínima de precisão.
Incentivamos você a experimentar este novo recurso, que pode ser particularmente importante para implantação em ambientes com recursos limitados.