Voir sur TensorFlow.org | Exécuter dans Google Colab | Voir sur GitHub | Télécharger le cahier | Voir le modèle TF Hub |
Dans ce tutoriel, vous apprendrez à utiliser les indicateurs d' équité pour évaluer incorporations de TF Hub . Ce portable utilise l' ensemble de données Civil Commentaires .
Installer
Installez les bibliothèques requises.
!pip install -q -U pip==20.2
!pip install fairness-indicators \
"absl-py==0.12.0" \
"pyarrow==2.0.0" \
"apache-beam==2.34.0" \
"avro-python3==1.9.1"
Importez les autres bibliothèques requises.
import os
import tempfile
import apache_beam as beam
from datetime import datetime
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_model_analysis as tfma
from tensorflow_model_analysis.addons.fairness.view import widget_view
from tensorflow_model_analysis.addons.fairness.post_export_metrics import fairness_indicators
from fairness_indicators import example_model
from fairness_indicators.tutorial_utils import util
ERROR: Traceback (most recent call last): File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/apache_beam/io/gcp/bigquery.py", line 341, in <module> import google.cloud.bigquery_storage_v1 as bq_storage ModuleNotFoundError: No module named 'google.cloud.bigquery_storage_v1'
Base de données
Dans ce cahier, vous travaillez avec le Civil Commentaires ensemble de données qui contient environ 2 millions de commentaires publics rendus publics par la Civil Commentaires plate - forme en 2017 pour la recherche en cours. Cet effort a été parrainé par Jigsaw, qui a organisé des concours sur Kaggle pour aider à classer les commentaires toxiques et à minimiser les biais involontaires des modèles.
Chaque commentaire de texte individuel dans l'ensemble de données a une étiquette de toxicité, l'étiquette étant 1 si le commentaire est toxique et 0 si le commentaire est non toxique. Dans les données, un sous-ensemble de commentaires est étiqueté avec une variété d'attributs d'identité, y compris des catégories pour le sexe, l'orientation sexuelle, la religion et la race ou l'origine ethnique.
Préparer les données
Tensorflow caractéristiques de parse données à l' aide tf.io.FixedLenFeature
et tf.io.VarLenFeature
. Cartographiez la fonctionnalité d'entrée, la fonctionnalité de sortie et toutes les autres fonctionnalités de découpage d'intérêt.
BASE_DIR = tempfile.gettempdir()
# The input and output features of the classifier
TEXT_FEATURE = 'comment_text'
LABEL = 'toxicity'
FEATURE_MAP = {
# input and output features
LABEL: tf.io.FixedLenFeature([], tf.float32),
TEXT_FEATURE: tf.io.FixedLenFeature([], tf.string),
# slicing features
'sexual_orientation': tf.io.VarLenFeature(tf.string),
'gender': tf.io.VarLenFeature(tf.string),
'religion': tf.io.VarLenFeature(tf.string),
'race': tf.io.VarLenFeature(tf.string),
'disability': tf.io.VarLenFeature(tf.string)
}
IDENTITY_TERMS = ['gender', 'sexual_orientation', 'race', 'religion', 'disability']
Par défaut, le notebook télécharge une version prétraitée de cet ensemble de données, mais vous pouvez utiliser l'ensemble de données d'origine et réexécuter les étapes de traitement si vous le souhaitez.
Dans l'ensemble de données d'origine, chaque commentaire est étiqueté avec le pourcentage d'évaluateurs qui pensent qu'un commentaire correspond à une identité particulière. Par exemple, un commentaire peut être marqué par ce qui suit: { male: 0.3, female: 1.0, transgender: 0.0, heterosexual: 0.8, homosexual_gay_or_lesbian: 1.0 }
.
L'étape de traitement regroupe les identités par catégorie (genre, orientation_sexuelle, etc.) et supprime les identités avec un score inférieur à 0,5. Ainsi, l'exemple ci-dessus serait converti en ce qui suit : des évaluateurs qui pensent qu'un commentaire correspond à une identité particulière. Par exemple, le commentaire ci - dessus sera marqué par ce qui suit: { gender: [female], sexual_orientation: [heterosexual, homosexual_gay_or_lesbian] }
Téléchargez le jeu de données.
download_original_data = False
if download_original_data:
train_tf_file = tf.keras.utils.get_file('train_tf.tfrecord',
'https://storage.googleapis.com/civil_comments_dataset/train_tf.tfrecord')
validate_tf_file = tf.keras.utils.get_file('validate_tf.tfrecord',
'https://storage.googleapis.com/civil_comments_dataset/validate_tf.tfrecord')
# The identity terms list will be grouped together by their categories
# (see 'IDENTITY_COLUMNS') on threshold 0.5. Only the identity term column,
# text column and label column will be kept after processing.
train_tf_file = util.convert_comments_data(train_tf_file)
validate_tf_file = util.convert_comments_data(validate_tf_file)
else:
train_tf_file = tf.keras.utils.get_file('train_tf_processed.tfrecord',
'https://storage.googleapis.com/civil_comments_dataset/train_tf_processed.tfrecord')
validate_tf_file = tf.keras.utils.get_file('validate_tf_processed.tfrecord',
'https://storage.googleapis.com/civil_comments_dataset/validate_tf_processed.tfrecord')
Downloading data from https://storage.googleapis.com/civil_comments_dataset/train_tf_processed.tfrecord 488161280/488153424 [==============================] - 2s 0us/step 488169472/488153424 [==============================] - 2s 0us/step Downloading data from https://storage.googleapis.com/civil_comments_dataset/validate_tf_processed.tfrecord 324943872/324941336 [==============================] - 9s 0us/step 324952064/324941336 [==============================] - 9s 0us/step
Créer un pipeline d'analyse de modèle TensorFlow
La bibliothèque d' indicateurs d' équité fonctionne sur tensorflow modèle modèles Analyse (de TFMA) . Les modèles TFMA enveloppent les modèles TensorFlow de fonctionnalités supplémentaires pour évaluer et visualiser leurs résultats. L'évaluation réelle se produit à l' intérieur d'un pipeline de faisceau Apache .
Les étapes à suivre pour créer un pipeline TFMA sont :
- Construire un modèle TensorFlow
- Construire un modèle TFMA sur le modèle TensorFlow
- Exécutez l'analyse du modèle dans un orchestrateur. L'exemple de modèle de ce bloc-notes utilise Apache Beam comme orchestrateur.
def embedding_fairness_result(embedding, identity_term='gender'):
model_dir = os.path.join(BASE_DIR, 'train',
datetime.now().strftime('%Y%m%d-%H%M%S'))
print("Training classifier for " + embedding)
classifier = example_model.train_model(model_dir,
train_tf_file,
LABEL,
TEXT_FEATURE,
FEATURE_MAP,
embedding)
# Create a unique path to store the results for this embedding.
embedding_name = embedding.split('/')[-2]
eval_result_path = os.path.join(BASE_DIR, 'eval_result', embedding_name)
example_model.evaluate_model(classifier,
validate_tf_file,
eval_result_path,
identity_term,
LABEL,
FEATURE_MAP)
return tfma.load_eval_result(output_path=eval_result_path)
Exécuter les indicateurs TFMA et d'équité
Indicateurs d'équité
Certaines des mesures disponibles avec les indicateurs d'équité sont :
- Taux négatif, taux de faux négatifs (FNR) et taux de vrais négatifs (TNR)
- Taux positif, taux de faux positifs (FPR) et taux de vrais positifs (TPR)
- Précision
- Précision et rappel
- AUC de rappel de précision
- ROC ASC
Incorporations de texte
TF-Hub fournit plusieurs incorporations texte. Ces encastrements serviront de colonne de fonctionnalités pour les différents modèles. Ce didacticiel utilise les intégrations suivantes :
- aléatoire nnlm-en-dim128 : embeddings texte aléatoire, cela sert de base pratique.
- nnlm-en-dim128 : un texte intégrant basé sur un modèle de langue probabilistes Neural .
- universel phrase codeur : un texte embedding basé sur Sentence Universal Encoder .
Résultats de l'indicateur d'équité
Les indicateurs d'équité avec le calcul embedding_fairness_result
pipeline, puis rendre les résultats dans l'indicateur d' équité UI widget avec widget_view.render_fairness_indicator
pour tous les incorporations ci - dessus.
NNLM aléatoire
eval_result_random_nnlm = embedding_fairness_result('https://tfhub.dev/google/random-nnlm-en-dim128/1')
Training classifier for https://tfhub.dev/google/random-nnlm-en-dim128/1 INFO:tensorflow:Using default config. INFO:tensorflow:Using default config. INFO:tensorflow:Using config: {'_model_dir': '/tmp/train/20220107-182244', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Using config: {'_model_dir': '/tmp/train/20220107-182244', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:397: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:397: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2022-01-07 18:22:54.196242: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 26 into an existing graph with producer version 987. Shape inference will have run different parts of the graph with different producer versions. INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/canned/head.py:400: NumericColumn._get_dense_tensor (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/canned/head.py:400: NumericColumn._get_dense_tensor (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/feature_column/feature_column.py:2188: NumericColumn._transform_feature (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/feature_column/feature_column.py:2188: NumericColumn._transform_feature (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/adagrad.py:139: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/adagrad.py:139: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/train/20220107-182244/model.ckpt. INFO:tensorflow:Saving checkpoints for 0 into /tmp/train/20220107-182244/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 60.23522, step = 0 INFO:tensorflow:loss = 60.23522, step = 0 INFO:tensorflow:global_step/sec: 78.2958 INFO:tensorflow:global_step/sec: 78.2958 INFO:tensorflow:loss = 67.36491, step = 100 (1.279 sec) INFO:tensorflow:loss = 67.36491, step = 100 (1.279 sec) INFO:tensorflow:global_step/sec: 85.8245 INFO:tensorflow:global_step/sec: 85.8245 INFO:tensorflow:loss = 57.875557, step = 200 (1.165 sec) INFO:tensorflow:loss = 57.875557, step = 200 (1.165 sec) INFO:tensorflow:global_step/sec: 83.7495 INFO:tensorflow:global_step/sec: 83.7495 INFO:tensorflow:loss = 61.091763, step = 300 (1.194 sec) INFO:tensorflow:loss = 61.091763, step = 300 (1.194 sec) INFO:tensorflow:global_step/sec: 83.0013 INFO:tensorflow:global_step/sec: 83.0013 INFO:tensorflow:loss = 62.251183, step = 400 (1.205 sec) INFO:tensorflow:loss = 62.251183, step = 400 (1.205 sec) INFO:tensorflow:global_step/sec: 83.4782 INFO:tensorflow:global_step/sec: 83.4782 INFO:tensorflow:loss = 56.21132, step = 500 (1.198 sec) INFO:tensorflow:loss = 56.21132, step = 500 (1.198 sec) INFO:tensorflow:global_step/sec: 87.0099 INFO:tensorflow:global_step/sec: 87.0099 INFO:tensorflow:loss = 57.211937, step = 600 (1.149 sec) INFO:tensorflow:loss = 57.211937, step = 600 (1.149 sec) INFO:tensorflow:global_step/sec: 86.7988 INFO:tensorflow:global_step/sec: 86.7988 INFO:tensorflow:loss = 62.16255, step = 700 (1.152 sec) INFO:tensorflow:loss = 62.16255, step = 700 (1.152 sec) INFO:tensorflow:global_step/sec: 88.1099 INFO:tensorflow:global_step/sec: 88.1099 INFO:tensorflow:loss = 58.081688, step = 800 (1.135 sec) INFO:tensorflow:loss = 58.081688, step = 800 (1.135 sec) INFO:tensorflow:global_step/sec: 85.3134 INFO:tensorflow:global_step/sec: 85.3134 INFO:tensorflow:loss = 57.763985, step = 900 (1.172 sec) INFO:tensorflow:loss = 57.763985, step = 900 (1.172 sec) INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000... INFO:tensorflow:Saving checkpoints for 1000 into /tmp/train/20220107-182244/model.ckpt. INFO:tensorflow:Saving checkpoints for 1000 into /tmp/train/20220107-182244/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000... INFO:tensorflow:Loss for final step: 59.963802. INFO:tensorflow:Loss for final step: 59.963802. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/encoding.py:132: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/encoding.py:132: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2022-01-07 18:23:11.033169: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 26 into an existing graph with producer version 987. Shape inference will have run different parts of the graph with different producer versions. INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/canned/head.py:640: auc (from tensorflow.python.ops.metrics_impl) is deprecated and will be removed in a future version. Instructions for updating: The value of AUC returned by this may race with the update so this is deprecated. Please use tf.keras.metrics.AUC instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/canned/head.py:640: auc (from tensorflow.python.ops.metrics_impl) is deprecated and will be removed in a future version. Instructions for updating: The value of AUC returned by this may race with the update so this is deprecated. Please use tf.keras.metrics.AUC instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Predict: None INFO:tensorflow:Signatures INCLUDED in export for Predict: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval'] INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval'] WARNING:tensorflow:Export includes no default signature! WARNING:tensorflow:Export includes no default signature! INFO:tensorflow:Restoring parameters from /tmp/train/20220107-182244/model.ckpt-1000 INFO:tensorflow:Restoring parameters from /tmp/train/20220107-182244/model.ckpt-1000 INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/tfma_eval_model/temp-1641579790/assets INFO:tensorflow:Assets written to: /tmp/tfma_eval_model/temp-1641579790/assets INFO:tensorflow:SavedModel written to: /tmp/tfma_eval_model/temp-1641579790/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tfma_eval_model/temp-1641579790/saved_model.pb WARNING:absl:Tensorflow version (2.8.0-rc0) found. Note that TFMA support for TF 2.0 is currently in beta WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/load.py:164: load (from tensorflow.python.saved_model.loader_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.loader.load or tf.compat.v1.saved_model.load. There will be a new function for importing SavedModels in Tensorflow 2.0. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/load.py:164: load (from tensorflow.python.saved_model.loader_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.loader.load or tf.compat.v1.saved_model.load. There will be a new function for importing SavedModels in Tensorflow 2.0. INFO:tensorflow:Restoring parameters from /tmp/tfma_eval_model/1641579790/variables/variables INFO:tensorflow:Restoring parameters from /tmp/tfma_eval_model/1641579790/variables/variables WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/graph_ref.py:184: get_tensor_from_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.get_tensor_from_tensor_info or tf.compat.v1.saved_model.get_tensor_from_tensor_info. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/graph_ref.py:184: get_tensor_from_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.get_tensor_from_tensor_info or tf.compat.v1.saved_model.get_tensor_from_tensor_info. WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:107: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: `tf.data.TFRecordDataset(path)` WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:107: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: `tf.data.TFRecordDataset(path)`
widget_view.render_fairness_indicator(eval_result=eval_result_random_nnlm)
FairnessIndicatorViewer(slicingMetrics=[{'sliceValue': 'Overall', 'slice': 'Overall', 'metrics': {'post_export…
NNLM
eval_result_nnlm = embedding_fairness_result('https://tfhub.dev/google/nnlm-en-dim128/1')
Training classifier for https://tfhub.dev/google/nnlm-en-dim128/1 INFO:tensorflow:Using default config. INFO:tensorflow:Using default config. INFO:tensorflow:Using config: {'_model_dir': '/tmp/train/20220107-182524', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Using config: {'_model_dir': '/tmp/train/20220107-182524', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2022-01-07 18:25:24.785154: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 26 into an existing graph with producer version 987. Shape inference will have run different parts of the graph with different producer versions. INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/train/20220107-182524/model.ckpt. INFO:tensorflow:Saving checkpoints for 0 into /tmp/train/20220107-182524/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 58.637047, step = 0 INFO:tensorflow:loss = 58.637047, step = 0 INFO:tensorflow:global_step/sec: 75.6907 INFO:tensorflow:global_step/sec: 75.6907 INFO:tensorflow:loss = 56.208035, step = 100 (1.323 sec) INFO:tensorflow:loss = 56.208035, step = 100 (1.323 sec) INFO:tensorflow:global_step/sec: 85.4193 INFO:tensorflow:global_step/sec: 85.4193 INFO:tensorflow:loss = 47.563675, step = 200 (1.170 sec) INFO:tensorflow:loss = 47.563675, step = 200 (1.170 sec) INFO:tensorflow:global_step/sec: 85.3916 INFO:tensorflow:global_step/sec: 85.3916 INFO:tensorflow:loss = 56.227097, step = 300 (1.171 sec) INFO:tensorflow:loss = 56.227097, step = 300 (1.171 sec) INFO:tensorflow:global_step/sec: 85.7359 INFO:tensorflow:global_step/sec: 85.7359 INFO:tensorflow:loss = 55.668434, step = 400 (1.166 sec) INFO:tensorflow:loss = 55.668434, step = 400 (1.166 sec) INFO:tensorflow:global_step/sec: 85.6231 INFO:tensorflow:global_step/sec: 85.6231 INFO:tensorflow:loss = 41.7245, step = 500 (1.168 sec) INFO:tensorflow:loss = 41.7245, step = 500 (1.168 sec) INFO:tensorflow:global_step/sec: 85.1399 INFO:tensorflow:global_step/sec: 85.1399 INFO:tensorflow:loss = 45.596313, step = 600 (1.174 sec) INFO:tensorflow:loss = 45.596313, step = 600 (1.174 sec) INFO:tensorflow:global_step/sec: 83.6346 INFO:tensorflow:global_step/sec: 83.6346 INFO:tensorflow:loss = 51.108143, step = 700 (1.196 sec) INFO:tensorflow:loss = 51.108143, step = 700 (1.196 sec) INFO:tensorflow:global_step/sec: 85.4834 INFO:tensorflow:global_step/sec: 85.4834 INFO:tensorflow:loss = 47.63583, step = 800 (1.170 sec) INFO:tensorflow:loss = 47.63583, step = 800 (1.170 sec) INFO:tensorflow:global_step/sec: 86.7353 INFO:tensorflow:global_step/sec: 86.7353 INFO:tensorflow:loss = 48.044117, step = 900 (1.153 sec) INFO:tensorflow:loss = 48.044117, step = 900 (1.153 sec) INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000... INFO:tensorflow:Saving checkpoints for 1000 into /tmp/train/20220107-182524/model.ckpt. INFO:tensorflow:Saving checkpoints for 1000 into /tmp/train/20220107-182524/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000... INFO:tensorflow:Loss for final step: 50.57175. INFO:tensorflow:Loss for final step: 50.57175. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2022-01-07 18:25:40.091474: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 26 into an existing graph with producer version 987. Shape inference will have run different parts of the graph with different producer versions. INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Predict: None INFO:tensorflow:Signatures INCLUDED in export for Predict: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval'] INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval'] WARNING:tensorflow:Export includes no default signature! WARNING:tensorflow:Export includes no default signature! INFO:tensorflow:Restoring parameters from /tmp/train/20220107-182524/model.ckpt-1000 INFO:tensorflow:Restoring parameters from /tmp/train/20220107-182524/model.ckpt-1000 INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/tfma_eval_model/temp-1641579940/assets INFO:tensorflow:Assets written to: /tmp/tfma_eval_model/temp-1641579940/assets INFO:tensorflow:SavedModel written to: /tmp/tfma_eval_model/temp-1641579940/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tfma_eval_model/temp-1641579940/saved_model.pb WARNING:absl:Tensorflow version (2.8.0-rc0) found. Note that TFMA support for TF 2.0 is currently in beta WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:tensorflow:Restoring parameters from /tmp/tfma_eval_model/1641579940/variables/variables INFO:tensorflow:Restoring parameters from /tmp/tfma_eval_model/1641579940/variables/variables
widget_view.render_fairness_indicator(eval_result=eval_result_nnlm)
FairnessIndicatorViewer(slicingMetrics=[{'sliceValue': 'Overall', 'slice': 'Overall', 'metrics': {'label/mean'…
Encodeur de phrases universel
eval_result_use = embedding_fairness_result('https://tfhub.dev/google/universal-sentence-encoder/2')
Training classifier for https://tfhub.dev/google/universal-sentence-encoder/2 INFO:tensorflow:Using default config. INFO:tensorflow:Using default config. INFO:tensorflow:Using config: {'_model_dir': '/tmp/train/20220107-182759', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Using config: {'_model_dir': '/tmp/train/20220107-182759', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. 2022-01-07 18:28:15.955057: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 26 into an existing graph with producer version 987. Shape inference will have run different parts of the graph with different producer versions. INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/train/20220107-182759/model.ckpt. INFO:tensorflow:Saving checkpoints for 0 into /tmp/train/20220107-182759/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 59.228935, step = 0 INFO:tensorflow:loss = 59.228935, step = 0 INFO:tensorflow:global_step/sec: 8.64079 INFO:tensorflow:global_step/sec: 8.64079 INFO:tensorflow:loss = 50.28162, step = 100 (11.575 sec) INFO:tensorflow:loss = 50.28162, step = 100 (11.575 sec) INFO:tensorflow:global_step/sec: 8.72597 INFO:tensorflow:global_step/sec: 8.72597 INFO:tensorflow:loss = 46.290745, step = 200 (11.460 sec) INFO:tensorflow:loss = 46.290745, step = 200 (11.460 sec) INFO:tensorflow:global_step/sec: 9.02825 INFO:tensorflow:global_step/sec: 9.02825 INFO:tensorflow:loss = 48.490734, step = 300 (11.076 sec) INFO:tensorflow:loss = 48.490734, step = 300 (11.076 sec) INFO:tensorflow:global_step/sec: 9.01342 INFO:tensorflow:global_step/sec: 9.01342 INFO:tensorflow:loss = 44.54372, step = 400 (11.095 sec) INFO:tensorflow:loss = 44.54372, step = 400 (11.095 sec) INFO:tensorflow:global_step/sec: 8.952 INFO:tensorflow:global_step/sec: 8.952 INFO:tensorflow:loss = 35.568554, step = 500 (11.171 sec) INFO:tensorflow:loss = 35.568554, step = 500 (11.171 sec) INFO:tensorflow:global_step/sec: 9.09908 INFO:tensorflow:global_step/sec: 9.09908 INFO:tensorflow:loss = 42.5132, step = 600 (10.990 sec) INFO:tensorflow:loss = 42.5132, step = 600 (10.990 sec) INFO:tensorflow:global_step/sec: 9.02127 INFO:tensorflow:global_step/sec: 9.02127 INFO:tensorflow:loss = 40.52431, step = 700 (11.085 sec) INFO:tensorflow:loss = 40.52431, step = 700 (11.085 sec) INFO:tensorflow:global_step/sec: 9.09376 INFO:tensorflow:global_step/sec: 9.09376 INFO:tensorflow:loss = 37.5485, step = 800 (10.996 sec) INFO:tensorflow:loss = 37.5485, step = 800 (10.996 sec) INFO:tensorflow:global_step/sec: 9.11679 INFO:tensorflow:global_step/sec: 9.11679 INFO:tensorflow:loss = 32.65558, step = 900 (10.968 sec) INFO:tensorflow:loss = 32.65558, step = 900 (10.968 sec) INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000... INFO:tensorflow:Saving checkpoints for 1000 into /tmp/train/20220107-182759/model.ckpt. INFO:tensorflow:Saving checkpoints for 1000 into /tmp/train/20220107-182759/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000... INFO:tensorflow:Loss for final step: 46.92047. INFO:tensorflow:Loss for final step: 46.92047. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. 2022-01-07 18:30:32.176628: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 26 into an existing graph with producer version 987. Shape inference will have run different parts of the graph with different producer versions. INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Predict: None INFO:tensorflow:Signatures INCLUDED in export for Predict: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval'] INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval'] WARNING:tensorflow:Export includes no default signature! WARNING:tensorflow:Export includes no default signature! INFO:tensorflow:Restoring parameters from /tmp/train/20220107-182759/model.ckpt-1000 INFO:tensorflow:Restoring parameters from /tmp/train/20220107-182759/model.ckpt-1000 INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. INFO:tensorflow:SavedModel written to: /tmp/tfma_eval_model/temp-1641580231/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tfma_eval_model/temp-1641580231/saved_model.pb WARNING:absl:Tensorflow version (2.8.0-rc0) found. Note that TFMA support for TF 2.0 is currently in beta WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:tensorflow:Restoring parameters from /tmp/tfma_eval_model/1641580231/variables/variables INFO:tensorflow:Restoring parameters from /tmp/tfma_eval_model/1641580231/variables/variables
widget_view.render_fairness_indicator(eval_result=eval_result_use)
FairnessIndicatorViewer(slicingMetrics=[{'sliceValue': 'Overall', 'slice': 'Overall', 'metrics': {'post_export…
Comparaison des intégrations
Vous pouvez également utiliser des indicateurs d'équité pour comparer directement les inclusions. Par exemple, comparez les modèles générés à partir des représentations vectorielles continues NNLM et USE.
widget_view.render_fairness_indicator(multi_eval_results={'nnlm': eval_result_nnlm, 'use': eval_result_use})
FairnessIndicatorViewer(evalName='nnlm', evalNameCompare='use', slicingMetrics=[{'sliceValue': 'Overall', 'sli…