![]() |
![]() |
![]() |
![]() |
This tutorial demonstrates how to train a sequence-to-sequence (seq2seq) model for Spanish-to-English translation roughly based on Effective Approaches to Attention-based Neural Machine Translation (Luong et al., 2015).
![]() |
This tutorial: An encoder/decoder connected by attention. |
---|
While this architecture is somewhat outdated, it is still a very useful project to work through to get a deeper understanding of sequence-to-sequence models and attention mechanisms (before going on to Transformers).
This example assumes some knowledge of TensorFlow fundamentals below the level of a Keras layer:
After training the model in this notebook, you will be able to input a Spanish sentence, such as "¿todavia estan en casa?", and return the English translation: "are you still at home?"
The resulting model is exportable as a tf.saved_model
, so it can be used in other TensorFlow environments.
The translation quality is reasonable for a toy example, but the generated attention plot is perhaps more interesting. This shows which parts of the input sentence has the model's attention while translating:
Setup
pip install "tensorflow-text>=2.11"
pip install einops
import numpy as np
import typing
from typing import Any, Tuple
import einops
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import tensorflow as tf
import tensorflow_text as tf_text
2023-02-16 12:36:10.291070: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory 2023-02-16 12:36:10.291148: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory 2023-02-16 12:36:10.291157: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
This tutorial uses a lot of low level API's where it's easy to get shapes wrong. This class is used to check shapes throughout the tutorial.
class ShapeChecker():
def __init__(self):
# Keep a cache of every axis-name seen
self.shapes = {}
def __call__(self, tensor, names, broadcast=False):
if not tf.executing_eagerly():
return
parsed = einops.parse_shape(tensor, names)
for name, new_dim in parsed.items():
old_dim = self.shapes.get(name, None)
if (broadcast and new_dim == 1):
continue
if old_dim is None:
# If the axis name is new, add its length to the cache.
self.shapes[name] = new_dim
continue
if new_dim != old_dim:
raise ValueError(f"Shape mismatch for dimension: '{name}'\n"
f" found: {new_dim}\n"
f" expected: {old_dim}\n")
The data
The tutorial uses a language dataset provided by Anki. This dataset contains language translation pairs in the format:
May I borrow this book? ¿Puedo tomar prestado este libro?
They have a variety of languages available, but this example uses the English-Spanish dataset.
Download and prepare the dataset
For convenience, a copy of this dataset is hosted on Google Cloud, but you can also download your own copy. After downloading the dataset, here are the steps you need to take to prepare the data:
- Add a start and end token to each sentence.
- Clean the sentences by removing special characters.
- Create a word index and reverse word index (dictionaries mapping from word → id and id → word).
- Pad each sentence to a maximum length.
# Download the file
import pathlib
path_to_zip = tf.keras.utils.get_file(
'spa-eng.zip', origin='http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip',
extract=True)
path_to_file = pathlib.Path(path_to_zip).parent/'spa-eng/spa.txt'
Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip 2638744/2638744 [==============================] - 0s 0us/step
def load_data(path):
text = path.read_text(encoding='utf-8')
lines = text.splitlines()
pairs = [line.split('\t') for line in lines]
context = np.array([context for target, context in pairs])
target = np.array([target for target, context in pairs])
return target, context
target_raw, context_raw = load_data(path_to_file)
print(context_raw[-1])
Si quieres sonar como un hablante nativo, debes estar dispuesto a practicar diciendo la misma frase una y otra vez de la misma manera en que un músico de banjo practica el mismo fraseo una y otra vez hasta que lo puedan tocar correctamente y en el tiempo esperado.
print(target_raw[-1])
If you want to sound like a native speaker, you must be willing to practice saying the same sentence over and over in the same way that banjo players practice the same phrase over and over until they can play it correctly and at the desired tempo.
Create a tf.data dataset
From these arrays of strings you can create a tf.data.Dataset
of strings that shuffles and batches them efficiently:
BUFFER_SIZE = len(context_raw)
BATCH_SIZE = 64
is_train = np.random.uniform(size=(len(target_raw),)) < 0.8
train_raw = (
tf.data.Dataset
.from_tensor_slices((context_raw[is_train], target_raw[is_train]))
.shuffle(BUFFER_SIZE)
.batch(BATCH_SIZE))
val_raw = (
tf.data.Dataset
.from_tensor_slices((context_raw[~is_train], target_raw[~is_train]))
.shuffle(BUFFER_SIZE)
.batch(BATCH_SIZE))
for example_context_strings, example_target_strings in train_raw.take(1):
print(example_context_strings[:5])
print()
print(example_target_strings[:5])
break
tf.Tensor( [b'Una vez hubo aqu\xc3\xad una iglesia.' b'\xc2\xbfCu\xc3\xa1l es tu nombre completo?' b'No tendr\xc3\xa1s ning\xc3\xban problema m\xc3\xa1s.' b'Tom le mostr\xc3\xb3 a Mary la foto de John.' b'Pareces un polic\xc3\xada.'], shape=(5,), dtype=string) tf.Tensor( [b'There was a church here once.' b"What's your full name?" b"You'll have no more problems." b"Tom showed Mary John's picture." b'You look like a policeman.'], shape=(5,), dtype=string)
Text preprocessing
One of the goals of this tutorial is to build a model that can be exported as a tf.saved_model
. To make that exported model useful it should take tf.string
inputs, and return tf.string
outputs: All the text processing happens inside the model. Mainly using a layers.TextVectorization
layer.
Standardization
The model is dealing with multilingual text with a limited vocabulary. So it will be important to standardize the input text.
The first step is Unicode normalization to split accented characters and replace compatibility characters with their ASCII equivalents.
The tensorflow_text
package contains a unicode normalize operation:
example_text = tf.constant('¿Todavía está en casa?')
print(example_text.numpy())
print(tf_text.normalize_utf8(example_text, 'NFKD').numpy())
b'\xc2\xbfTodav\xc3\xada est\xc3\xa1 en casa?' b'\xc2\xbfTodavi\xcc\x81a esta\xcc\x81 en casa?'
Unicode normalization will be the first step in the text standardization function:
def tf_lower_and_split_punct(text):
# Split accented characters.
text = tf_text.normalize_utf8(text, 'NFKD')
text = tf.strings.lower(text)
# Keep space, a to z, and select punctuation.
text = tf.strings.regex_replace(text, '[^ a-z.?!,¿]', '')
# Add spaces around punctuation.
text = tf.strings.regex_replace(text, '[.?!,¿]', r' \0 ')
# Strip whitespace.
text = tf.strings.strip(text)
text = tf.strings.join(['[START]', text, '[END]'], separator=' ')
return text
print(example_text.numpy().decode())
print(tf_lower_and_split_punct(example_text).numpy().decode())
¿Todavía está en casa? [START] ¿ todavia esta en casa ? [END]
Text Vectorization
This standardization function will be wrapped up in a tf.keras.layers.TextVectorization
layer which will handle the vocabulary extraction and conversion of input text to sequences of tokens.
max_vocab_size = 5000
context_text_processor = tf.keras.layers.TextVectorization(
standardize=tf_lower_and_split_punct,
max_tokens=max_vocab_size,
ragged=True)
The TextVectorization
layer and many other Keras preprocessing layers have an adapt
method. This method reads one epoch of the training data, and works a lot like Model.fit
. This adapt
method initializes the layer based on the data. Here it determines the vocabulary:
context_text_processor.adapt(train_raw.map(lambda context, target: context))
# Here are the first 10 words from the vocabulary:
context_text_processor.get_vocabulary()[:10]
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23. Instructions for updating: Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089 ['', '[UNK]', '[START]', '[END]', '.', 'que', 'de', 'el', 'a', 'no']
That's the Spanish TextVectorization
layer, now build and .adapt()
the English one:
target_text_processor = tf.keras.layers.TextVectorization(
standardize=tf_lower_and_split_punct,
max_tokens=max_vocab_size,
ragged=True)
target_text_processor.adapt(train_raw.map(lambda context, target: target))
target_text_processor.get_vocabulary()[:10]
['', '[UNK]', '[START]', '[END]', '.', 'the', 'i', 'to', 'you', 'tom']
Now these layers can convert a batch of strings into a batch of token IDs:
example_tokens = context_text_processor(example_context_strings)
example_tokens[:3, :]
<tf.RaggedTensor [[2, 23, 73, 757, 51, 23, 876, 4, 3], [2, 13, 153, 15, 36, 225, 2056, 12, 3], [2, 9, 1239, 396, 168, 35, 4, 3]]>
The get_vocabulary
method can be used to convert token IDs back to text:
context_vocab = np.array(context_text_processor.get_vocabulary())
tokens = context_vocab[example_tokens[0].numpy()]
' '.join(tokens)
'[START] una vez hubo aqui una iglesia . [END]'
The returned token IDs are zero-padded. This can easily be turned into a mask:
plt.subplot(1, 2, 1)
plt.pcolormesh(example_tokens.to_tensor())
plt.title('Token IDs')
plt.subplot(1, 2, 2)
plt.pcolormesh(example_tokens.to_tensor() != 0)
plt.title('Mask')
Text(0.5, 1.0, 'Mask')
Process the dataset
The process_text
function below converts the Datasets
of strings, into 0-padded tensors of token IDs. It also converts from a (context, target)
pair to an ((context, target_in), target_out)
pair for training with keras.Model.fit
. Keras expects (inputs, labels)
pairs, the inputs are the (context, target_in)
and the labels are target_out
. The difference between target_in
and target_out
is that they are shifted by one step relative to eachother, so that at each location the label is the next token.
def process_text(context, target):
context = context_text_processor(context).to_tensor()
target = target_text_processor(target)
targ_in = target[:,:-1].to_tensor()
targ_out = target[:,1:].to_tensor()
return (context, targ_in), targ_out
train_ds = train_raw.map(process_text, tf.data.AUTOTUNE)
val_ds = val_raw.map(process_text, tf.data.AUTOTUNE)
Here is the first sequence of each, from the first batch:
for (ex_context_tok, ex_tar_in), ex_tar_out in train_ds.take(1):
print(ex_context_tok[0, :10].numpy())
print()
print(ex_tar_in[0, :10].numpy())
print(ex_tar_out[0, :10].numpy())
[ 2 13 526 940 12 3 0 0 0 0] [ 2 54 8 513 11 0 0 0 0 0] [ 54 8 513 11 3 0 0 0 0 0]
The encoder/decoder
The following diagrams shows an overview of the model. In both the encoder is on the left, the decoder is on the right. At each time-step the decoder's output is combined with the encoder's output, to predict the next word.
The original [left] contains a few extra connections that are intentionally omitted from this tutorial's model [right], as they are generally unnecessary, and difficult to implement. Those missing connections are:
- Feeding the state from the encoder's RNN to the decoder's RNN
- Feeding the attention output back to the RNN's input.
![]() |
![]() |
The original from Effective Approaches to Attention-based Neural Machine Translation | This tutorial's model |
---|---|
Before getting into it define constants for the model:
UNITS = 256
The encoder
The goal of the encoder is to process the context sequence into a sequence of vectors that are useful for the decoder as it attempts to predict the next output for each timestep. Since the context sequence is constant, there is no restriction on how information can flow in the encoder, so use a bidirectional-RNN to do the processing:
![]() |
A bidirectional RNN |
---|
The encoder:
- Takes a list of token IDs (from
context_text_processor
). - Looks up an embedding vector for each token (Using a
layers.Embedding
). - Processes the embeddings into a new sequence (Using a bidirectional
layers.GRU
). - Returns the processed sequence. This will be passed to the attention head.
class Encoder(tf.keras.layers.Layer):
def __init__(self, text_processor, units):
super(Encoder, self).__init__()
self.text_processor = text_processor
self.vocab_size = text_processor.vocabulary_size()
self.units = units
# The embedding layer converts tokens to vectors
self.embedding = tf.keras.layers.Embedding(self.vocab_size, units,
mask_zero=True)
# The RNN layer processes those vectors sequentially.
self.rnn = tf.keras.layers.Bidirectional(
merge_mode='sum',
layer=tf.keras.layers.GRU(units,
# Return the sequence and state
return_sequences=True,
recurrent_initializer='glorot_uniform'))
def call(self, x):
shape_checker = ShapeChecker()
shape_checker(x, 'batch s')
# 2. The embedding layer looks up the embedding vector for each token.
x = self.embedding(x)
shape_checker(x, 'batch s units')
# 3. The GRU processes the sequence of embeddings.
x = self.rnn(x)
shape_checker(x, 'batch s units')
# 4. Returns the new sequence of embeddings.
return x
def convert_input(self, texts):
texts = tf.convert_to_tensor(texts)
if len(texts.shape) == 0:
texts = tf.convert_to_tensor(texts)[tf.newaxis]
context = self.text_processor(texts).to_tensor()
context = self(context)
return context
Try it out:
# Encode the input sequence.
encoder = Encoder(context_text_processor, UNITS)
ex_context = encoder(ex_context_tok)
print(f'Context tokens, shape (batch, s): {ex_context_tok.shape}')
print(f'Encoder output, shape (batch, s, units): {ex_context.shape}')
Context tokens, shape (batch, s): (64, 18) Encoder output, shape (batch, s, units): (64, 18, 256)
The attention layer
The attention layer lets the decoder access the information extracted by the encoder. It computes a vector from the entire context sequence, and adds that to the decoder's output.
The simplest way you could calculate a single vector from the entire sequence would be to take the average across the sequence (layers.GlobalAveragePooling1D
). An attention layer is similar, but calculates a weighted average across the context sequence. Where the weights are calculated from the combination of context and "query" vectors.
![]() |
The attention layer |
---|
class CrossAttention(tf.keras.layers.Layer):
def __init__(self, units, **kwargs):
super().__init__()
self.mha = tf.keras.layers.MultiHeadAttention(key_dim=units, num_heads=1, **kwargs)
self.layernorm = tf.keras.layers.LayerNormalization()
self.add = tf.keras.layers.Add()
def call(self, x, context):
shape_checker = ShapeChecker()
shape_checker(x, 'batch t units')
shape_checker(context, 'batch s units')
attn_output, attn_scores = self.mha(
query=x,
value=context,
return_attention_scores=True)
shape_checker(x, 'batch t units')
shape_checker(attn_scores, 'batch heads t s')
# Cache the attention scores for plotting later.
attn_scores = tf.reduce_mean(attn_scores, axis=1)
shape_checker(attn_scores, 'batch t s')
self.last_attention_weights = attn_scores
x = self.add([x, attn_output])
x = self.layernorm(x)
return x
attention_layer = CrossAttention(UNITS)
# Attend to the encoded tokens
embed = tf.keras.layers.Embedding(target_text_processor.vocabulary_size(),
output_dim=UNITS, mask_zero=True)
ex_tar_embed = embed(ex_tar_in)
result = attention_layer(ex_tar_embed, ex_context)
print(f'Context sequence, shape (batch, s, units): {ex_context.shape}')
print(f'Target sequence, shape (batch, t, units): {ex_tar_embed.shape}')
print(f'Attention result, shape (batch, t, units): {result.shape}')
print(f'Attention weights, shape (batch, t, s): {attention_layer.last_attention_weights.shape}')
Context sequence, shape (batch, s, units): (64, 18, 256) Target sequence, shape (batch, t, units): (64, 19, 256) Attention result, shape (batch, t, units): (64, 19, 256) Attention weights, shape (batch, t, s): (64, 19, 18)
The attention weights will sum to 1
over the context sequence, at each location in the target sequence.
attention_layer.last_attention_weights[0].numpy().sum(axis=-1)
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], dtype=float32)
Here are the attention weights across the context sequences at t=0
:
attention_weights = attention_layer.last_attention_weights
mask=(ex_context_tok != 0).numpy()
plt.subplot(1, 2, 1)
plt.pcolormesh(mask*attention_weights[:, 0, :])
plt.title('Attention weights')
plt.subplot(1, 2, 2)
plt.pcolormesh(mask)
plt.title('Mask');
Because of the small-random initialization the attention weights are initially all close to 1/(sequence_length)
. The model will learn to make these less uniform as training progresses.
The decoder
The decoder's job is to generate predictions for the next token at each location in the target sequence.
- It looks up embeddings for each token in the target sequence.
- It uses an RNN to process the target sequence, and keep track of what it has generated so far.
- It uses RNN output as the "query" to the attention layer, when attending to the encoder's output.
- At each location in the output it predicts the next token.
When training, the model predicts the next word at each location. So it's important that the information only flows in one direction through the model. The decoder uses a unidirectional (not bidirectional) RNN to process the target sequence.
When running inference with this model it produces one word at a time, and those are fed back into the model.
![]() |
A unidirectional RNN |
---|
Here is the Decoder
class' initializer. The initializer creates all the necessary layers.
class Decoder(tf.keras.layers.Layer):
@classmethod
def add_method(cls, fun):
setattr(cls, fun.__name__, fun)
return fun
def __init__(self, text_processor, units):
super(Decoder, self).__init__()
self.text_processor = text_processor
self.vocab_size = text_processor.vocabulary_size()
self.word_to_id = tf.keras.layers.StringLookup(
vocabulary=text_processor.get_vocabulary(),
mask_token='', oov_token='[UNK]')
self.id_to_word = tf.keras.layers.StringLookup(
vocabulary=text_processor.get_vocabulary(),
mask_token='', oov_token='[UNK]',
invert=True)
self.start_token = self.word_to_id('[START]')
self.end_token = self.word_to_id('[END]')
self.units = units
# 1. The embedding layer converts token IDs to vectors
self.embedding = tf.keras.layers.Embedding(self.vocab_size,
units, mask_zero=True)
# 2. The RNN keeps track of what's been generated so far.
self.rnn = tf.keras.layers.GRU(units,
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')
# 3. The RNN output will be the query for the attention layer.
self.attention = CrossAttention(units)
# 4. This fully connected layer produces the logits for each
# output token.
self.output_layer = tf.keras.layers.Dense(self.vocab_size)
Training
Next, the call
method, takes 3 arguments:
inputs
- acontext, x
pair where:context
- is the context from the encoder's output.x
- is the target sequence input.
state
- Optional, the previousstate
output from the decoder (the internal state of the decoder's RNN). Pass the state from a previous run to continue generating text where you left off.return_state
- [Default: False] - Set this toTrue
to return the RNN state.
@Decoder.add_method
def call(self,
context, x,
state=None,
return_state=False):
shape_checker = ShapeChecker()
shape_checker(x, 'batch t')
shape_checker(context, 'batch s units')
# 1. Lookup the embeddings
x = self.embedding(x)
shape_checker(x, 'batch t units')
# 2. Process the target sequence.
x, state = self.rnn(x, initial_state=state)
shape_checker(x, 'batch t units')
# 3. Use the RNN output as the query for the attention over the context.
x = self.attention(x, context)
self.last_attention_weights = self.attention.last_attention_weights
shape_checker(x, 'batch t units')
shape_checker(self.last_attention_weights, 'batch t s')
# Step 4. Generate logit predictions for the next token.
logits = self.output_layer(x)
shape_checker(logits, 'batch t target_vocab_size')
if return_state:
return logits, state
else:
return logits
That will be sufficient for training. Create an instance of the decoder to test out:
decoder = Decoder(target_text_processor, UNITS)
In training you'll use the decoder like this:
Given the context and target tokens, for each target token it predicts the next target token.
logits = decoder(ex_context, ex_tar_in)
print(f'encoder output shape: (batch, s, units) {ex_context.shape}')
print(f'input target tokens shape: (batch, t) {ex_tar_in.shape}')
print(f'logits shape shape: (batch, target_vocabulary_size) {logits.shape}')
encoder output shape: (batch, s, units) (64, 18, 256) input target tokens shape: (batch, t) (64, 19) logits shape shape: (batch, target_vocabulary_size) (64, 19, 5000)
Inference
To use it for inference you'll need a couple more methods:
@Decoder.add_method
def get_initial_state(self, context):
batch_size = tf.shape(context)[0]
start_tokens = tf.fill([batch_size, 1], self.start_token)
done = tf.zeros([batch_size, 1], dtype=tf.bool)
embedded = self.embedding(start_tokens)
return start_tokens, done, self.rnn.get_initial_state(embedded)[0]
@Decoder.add_method
def tokens_to_text(self, tokens):
words = self.id_to_word(tokens)
result = tf.strings.reduce_join(words, axis=-1, separator=' ')
result = tf.strings.regex_replace(result, '^ *\[START\] *', '')
result = tf.strings.regex_replace(result, ' *\[END\] *$', '')
return result
@Decoder.add_method
def get_next_token(self, context, next_token, done, state, temperature = 0.0):
logits, state = self(
context, next_token,
state = state,
return_state=True)
if temperature == 0.0:
next_token = tf.argmax(logits, axis=-1)
else:
logits = logits[:, -1, :]/temperature
next_token = tf.random.categorical(logits, num_samples=1)
# If a sequence produces an `end_token`, set it `done`
done = done | (next_token == self.end_token)
# Once a sequence is done it only produces 0-padding.
next_token = tf.where(done, tf.constant(0, dtype=tf.int64), next_token)
return next_token, done, state
With those extra functions, you can write a generation loop:
# Setup the loop variables.
next_token, done, state = decoder.get_initial_state(ex_context)
tokens = []
for n in range(10):
# Run one step.
next_token, done, state = decoder.get_next_token(
ex_context, next_token, done, state, temperature=1.0)
# Add the token to the output.
tokens.append(next_token)
# Stack all the tokens together.
tokens = tf.concat(tokens, axis=-1) # (batch, t)
# Convert the tokens back to a a string
result = decoder.tokens_to_text(tokens)
result[:3].numpy()
array([b'toaster porch dialed bringing remain repair border imagine will grandmother', b'quantity stalling rainy used shared hydrogen entrance work pleaded thanked', b'occur melting sensitive navy unsolved afternoon cooked bullet engineer holes'], dtype=object)
Since the model's untrained, it outputs items from the vocabulary almost uniformly at random.
The model
Now that you have all the model components, combine them to build the model for training:
class Translator(tf.keras.Model):
@classmethod
def add_method(cls, fun):
setattr(cls, fun.__name__, fun)
return fun
def __init__(self, units,
context_text_processor,
target_text_processor):
super().__init__()
# Build the encoder and decoder
encoder = Encoder(context_text_processor, units)
decoder = Decoder(target_text_processor, units)
self.encoder = encoder
self.decoder = decoder
def call(self, inputs):
context, x = inputs
context = self.encoder(context)
logits = self.decoder(context, x)
#TODO(b/250038731): remove this
try:
# Delete the keras mask, so keras doesn't scale the loss+accuracy.
del logits._keras_mask
except AttributeError:
pass
return logits
During training the model will be used like this:
model = Translator(UNITS, context_text_processor, target_text_processor)
logits = model((ex_context_tok, ex_tar_in))
print(f'Context tokens, shape: (batch, s, units) {ex_context_tok.shape}')
print(f'Target tokens, shape: (batch, t) {ex_tar_in.shape}')
print(f'logits, shape: (batch, t, target_vocabulary_size) {logits.shape}')
Context tokens, shape: (batch, s, units) (64, 18) Target tokens, shape: (batch, t) (64, 19) logits, shape: (batch, t, target_vocabulary_size) (64, 19, 5000)
Train
For training, you'll want to implement your own masked loss and accuracy functions:
def masked_loss(y_true, y_pred):
# Calculate the loss for each item in the batch.
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction='none')
loss = loss_fn(y_true, y_pred)
# Mask off the losses on padding.
mask = tf.cast(y_true != 0, loss.dtype)
loss *= mask
# Return the total.
return tf.reduce_sum(loss)/tf.reduce_sum(mask)
def masked_acc(y_true, y_pred):
# Calculate the loss for each item in the batch.
y_pred = tf.argmax(y_pred, axis=-1)
y_pred = tf.cast(y_pred, y_true.dtype)
match = tf.cast(y_true == y_pred, tf.float32)
mask = tf.cast(y_true != 0, tf.float32)
return tf.reduce_sum(match)/tf.reduce_sum(mask)
Configure the model for training:
model.compile(optimizer='adam',
loss=masked_loss,
metrics=[masked_acc, masked_loss])
The model is randomly initialized, and should give roughly uniform output probabilities. So it's easy to predict what the initial values of the metrics should be:
vocab_size = 1.0 * target_text_processor.vocabulary_size()
{"expected_loss": tf.math.log(vocab_size).numpy(),
"expected_acc": 1/vocab_size}
{'expected_loss': 8.517193, 'expected_acc': 0.0002}
That should roughly match the values returned by running a few steps of evaluation:
model.evaluate(val_ds, steps=20, return_dict=True)
20/20 [==============================] - 7s 20ms/step - loss: 8.5351 - masked_acc: 9.1743e-05 - masked_loss: 8.5351 {'loss': 8.535134315490723, 'masked_acc': 9.174311708193272e-05, 'masked_loss': 8.535134315490723}
history = model.fit(
train_ds.repeat(),
epochs=100,
steps_per_epoch = 100,
validation_data=val_ds,
validation_steps = 20,
callbacks=[
tf.keras.callbacks.EarlyStopping(patience=3)])
Epoch 1/100 2023-02-16 12:36:39.864324: W tensorflow/core/common_runtime/type_inference.cc:339] Type inference failed. This indicates an invalid graph that escaped type checking. Error message: INVALID_ARGUMENT: expected compatible input types, but input 1: type_id: TFT_OPTIONAL args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_INT32 } } } is neither a subtype nor a supertype of the combined inputs preceding it: type_id: TFT_OPTIONAL args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_INT8 } } } while inferring type of node 'cond_41/output/_22' 100/100 [==============================] - 22s 99ms/step - loss: 5.0953 - masked_acc: 0.2503 - masked_loss: 5.0953 - val_loss: 4.1156 - val_masked_acc: 0.3526 - val_masked_loss: 4.1156 Epoch 2/100 100/100 [==============================] - 5s 51ms/step - loss: 3.7012 - masked_acc: 0.4029 - masked_loss: 3.7012 - val_loss: 3.3954 - val_masked_acc: 0.4395 - val_masked_loss: 3.3954 Epoch 3/100 100/100 [==============================] - 4s 39ms/step - loss: 3.1237 - masked_acc: 0.4818 - masked_loss: 3.1237 - val_loss: 2.8785 - val_masked_acc: 0.5090 - val_masked_loss: 2.8785 Epoch 4/100 100/100 [==============================] - 4s 36ms/step - loss: 2.6856 - masked_acc: 0.5400 - masked_loss: 2.6856 - val_loss: 2.4681 - val_masked_acc: 0.5782 - val_masked_loss: 2.4681 Epoch 5/100 100/100 [==============================] - 4s 37ms/step - loss: 2.3981 - masked_acc: 0.5808 - masked_loss: 2.3981 - val_loss: 2.2846 - val_masked_acc: 0.5979 - val_masked_loss: 2.2846 Epoch 6/100 100/100 [==============================] - 3s 33ms/step - loss: 2.1541 - masked_acc: 0.6188 - masked_loss: 2.1541 - val_loss: 2.0164 - val_masked_acc: 0.6380 - val_masked_loss: 2.0164 Epoch 7/100 100/100 [==============================] - 3s 32ms/step - loss: 1.9805 - masked_acc: 0.6432 - masked_loss: 1.9805 - val_loss: 1.8929 - val_masked_acc: 0.6580 - val_masked_loss: 1.8929 Epoch 8/100 100/100 [==============================] - 3s 33ms/step - loss: 1.8762 - masked_acc: 0.6602 - masked_loss: 1.8762 - val_loss: 1.8590 - val_masked_acc: 0.6604 - val_masked_loss: 1.8590 Epoch 9/100 100/100 [==============================] - 4s 37ms/step - loss: 1.7481 - masked_acc: 0.6776 - masked_loss: 1.7481 - val_loss: 1.6993 - val_masked_acc: 0.6838 - val_masked_loss: 1.6993 Epoch 10/100 100/100 [==============================] - 3s 31ms/step - loss: 1.6666 - masked_acc: 0.6877 - masked_loss: 1.6666 - val_loss: 1.6250 - val_masked_acc: 0.6916 - val_masked_loss: 1.6250 Epoch 11/100 100/100 [==============================] - 3s 34ms/step - loss: 1.6244 - masked_acc: 0.6937 - masked_loss: 1.6244 - val_loss: 1.5837 - val_masked_acc: 0.6935 - val_masked_loss: 1.5837 Epoch 12/100 100/100 [==============================] - 3s 32ms/step - loss: 1.5694 - masked_acc: 0.7002 - masked_loss: 1.5694 - val_loss: 1.5319 - val_masked_acc: 0.7034 - val_masked_loss: 1.5319 Epoch 13/100 100/100 [==============================] - 3s 32ms/step - loss: 1.5278 - masked_acc: 0.7044 - masked_loss: 1.5278 - val_loss: 1.4995 - val_masked_acc: 0.7121 - val_masked_loss: 1.4995 Epoch 14/100 100/100 [==============================] - 3s 32ms/step - loss: 1.4834 - masked_acc: 0.7108 - masked_loss: 1.4834 - val_loss: 1.4429 - val_masked_acc: 0.7216 - val_masked_loss: 1.4429 Epoch 15/100 100/100 [==============================] - 3s 33ms/step - loss: 1.4032 - masked_acc: 0.7212 - masked_loss: 1.4031 - val_loss: 1.4187 - val_masked_acc: 0.7178 - val_masked_loss: 1.4187 Epoch 16/100 100/100 [==============================] - 3s 31ms/step - loss: 1.2119 - masked_acc: 0.7474 - masked_loss: 1.2119 - val_loss: 1.4816 - val_masked_acc: 0.7108 - val_masked_loss: 1.4816 Epoch 17/100 100/100 [==============================] - 3s 30ms/step - loss: 1.2002 - masked_acc: 0.7498 - masked_loss: 1.2002 - val_loss: 1.3125 - val_masked_acc: 0.7414 - val_masked_loss: 1.3125 Epoch 18/100 100/100 [==============================] - 3s 30ms/step - loss: 1.2416 - masked_acc: 0.7410 - masked_loss: 1.2416 - val_loss: 1.3376 - val_masked_acc: 0.7353 - val_masked_loss: 1.3376 Epoch 19/100 100/100 [==============================] - 3s 30ms/step - loss: 1.2058 - masked_acc: 0.7477 - masked_loss: 1.2058 - val_loss: 1.3283 - val_masked_acc: 0.7359 - val_masked_loss: 1.3283 Epoch 20/100 100/100 [==============================] - 3s 32ms/step - loss: 1.2117 - masked_acc: 0.7454 - masked_loss: 1.2117 - val_loss: 1.2911 - val_masked_acc: 0.7378 - val_masked_loss: 1.2911 Epoch 21/100 100/100 [==============================] - 3s 30ms/step - loss: 1.1913 - masked_acc: 0.7513 - masked_loss: 1.1913 - val_loss: 1.3344 - val_masked_acc: 0.7346 - val_masked_loss: 1.3344 Epoch 22/100 100/100 [==============================] - 3s 32ms/step - loss: 1.1744 - masked_acc: 0.7552 - masked_loss: 1.1744 - val_loss: 1.3009 - val_masked_acc: 0.7372 - val_masked_loss: 1.3009 Epoch 23/100 100/100 [==============================] - 3s 31ms/step - loss: 1.2126 - masked_acc: 0.7458 - masked_loss: 1.2126 - val_loss: 1.2732 - val_masked_acc: 0.7440 - val_masked_loss: 1.2732 Epoch 24/100 100/100 [==============================] - 3s 31ms/step - loss: 1.1337 - masked_acc: 0.7586 - masked_loss: 1.1337 - val_loss: 1.2396 - val_masked_acc: 0.7458 - val_masked_loss: 1.2396 Epoch 25/100 100/100 [==============================] - 3s 31ms/step - loss: 1.1515 - masked_acc: 0.7568 - masked_loss: 1.1515 - val_loss: 1.2312 - val_masked_acc: 0.7506 - val_masked_loss: 1.2312 Epoch 26/100 100/100 [==============================] - 3s 31ms/step - loss: 1.1662 - masked_acc: 0.7543 - masked_loss: 1.1662 - val_loss: 1.1972 - val_masked_acc: 0.7520 - val_masked_loss: 1.1972 Epoch 27/100 100/100 [==============================] - 3s 31ms/step - loss: 1.1506 - masked_acc: 0.7580 - masked_loss: 1.1506 - val_loss: 1.2269 - val_masked_acc: 0.7522 - val_masked_loss: 1.2269 Epoch 28/100 100/100 [==============================] - 3s 32ms/step - loss: 1.1470 - masked_acc: 0.7576 - masked_loss: 1.1470 - val_loss: 1.2822 - val_masked_acc: 0.7439 - val_masked_loss: 1.2822 Epoch 29/100 100/100 [==============================] - 3s 30ms/step - loss: 1.1119 - masked_acc: 0.7640 - masked_loss: 1.1119 - val_loss: 1.2174 - val_masked_acc: 0.7518 - val_masked_loss: 1.2174
plt.plot(history.history['loss'], label='loss')
plt.plot(history.history['val_loss'], label='val_loss')
plt.ylim([0, max(plt.ylim())])
plt.xlabel('Epoch #')
plt.ylabel('CE/token')
plt.legend()
<matplotlib.legend.Legend at 0x7fe700316820>
plt.plot(history.history['masked_acc'], label='accuracy')
plt.plot(history.history['val_masked_acc'], label='val_accuracy')
plt.ylim([0, max(plt.ylim())])
plt.xlabel('Epoch #')
plt.ylabel('CE/token')
plt.legend()
<matplotlib.legend.Legend at 0x7fe70037a070>
Translate
Now that the model is trained, implement a function to execute the full text => text
translation. This code is basically identical to the inference example in the decoder section, but this also captures the attention weights.
@Translator.add_method
def translate(self,
texts, *,
max_length=50,
temperature=0.0):
# Process the input texts
context = self.encoder.convert_input(texts)
batch_size = tf.shape(texts)[0]
# Setup the loop inputs
tokens = []
attention_weights = []
next_token, done, state = self.decoder.get_initial_state(context)
for _ in range(max_length):
# Generate the next token
next_token, done, state = self.decoder.get_next_token(
context, next_token, done, state, temperature)
# Collect the generated tokens
tokens.append(next_token)
attention_weights.append(self.decoder.last_attention_weights)
if tf.executing_eagerly() and tf.reduce_all(done):
break
# Stack the lists of tokens and attention weights.
tokens = tf.concat(tokens, axis=-1) # t*[(batch 1)] -> (batch, t)
self.last_attention_weights = tf.concat(attention_weights, axis=1) # t*[(batch 1 s)] -> (batch, t s)
result = self.decoder.tokens_to_text(tokens)
return result
Here are the two helper methods, used above, to convert tokens to text, and to get the next token:
result = model.translate(['¿Todavía está en casa?']) # Are you still home
result[0].numpy().decode()
'is it still in home ? '
Use that to generate the attention plot:
@Translator.add_method
def plot_attention(self, text, **kwargs):
assert isinstance(text, str)
output = self.translate([text], **kwargs)
output = output[0].numpy().decode()
attention = self.last_attention_weights[0]
context = tf_lower_and_split_punct(text)
context = context.numpy().decode().split()
output = tf_lower_and_split_punct(output)
output = output.numpy().decode().split()[1:]
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(1, 1, 1)
ax.matshow(attention, cmap='viridis', vmin=0.0)
fontdict = {'fontsize': 14}
ax.set_xticklabels([''] + context, fontdict=fontdict, rotation=90)
ax.set_yticklabels([''] + output, fontdict=fontdict)
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
ax.set_xlabel('Input text')
ax.set_ylabel('Output text')
model.plot_attention('¿Todavía está en casa?') # Are you still home
/tmpfs/tmp/ipykernel_23853/3355722706.py:23: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels([''] + context, fontdict=fontdict, rotation=90) /tmpfs/tmp/ipykernel_23853/3355722706.py:24: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_yticklabels([''] + output, fontdict=fontdict)
Translate a few more sentences and plot them:
%%time
# This is my life.
model.plot_attention('Esta es mi vida.')
/tmpfs/tmp/ipykernel_23853/3355722706.py:23: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels([''] + context, fontdict=fontdict, rotation=90) /tmpfs/tmp/ipykernel_23853/3355722706.py:24: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_yticklabels([''] + output, fontdict=fontdict) CPU times: user 210 ms, sys: 61.5 ms, total: 272 ms Wall time: 196 ms
%%time
# Try to find out.'
model.plot_attention('Tratar de descubrir.')
/tmpfs/tmp/ipykernel_23853/3355722706.py:23: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels([''] + context, fontdict=fontdict, rotation=90) /tmpfs/tmp/ipykernel_23853/3355722706.py:24: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_yticklabels([''] + output, fontdict=fontdict) CPU times: user 245 ms, sys: 31.6 ms, total: 276 ms Wall time: 196 ms
The short sentences often work well, but if the input is too long the model literally loses focus and stops providing reasonable predictions. There are two main reasons for this:
- The model was trained with teacher-forcing feeding the correct token at each step, regardless of the model's predictions. The model could be made more robust if it were sometimes fed its own predictions.
- The model only has access to its previous output through the RNN state. If the RNN state looses track of where it was in the context sequence there's no way for the model to recover. Transformers improve on this by letting the decoder look at what it has output so far.
The raw data is sorted by length, so try translating the longest sequence:
long_text = context_raw[-1]
import textwrap
print('Expected output:\n', '\n'.join(textwrap.wrap(target_raw[-1])))
Expected output: If you want to sound like a native speaker, you must be willing to practice saying the same sentence over and over in the same way that banjo players practice the same phrase over and over until they can play it correctly and at the desired tempo.
model.plot_attention(long_text)
/tmpfs/tmp/ipykernel_23853/3355722706.py:23: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_xticklabels([''] + context, fontdict=fontdict, rotation=90) /tmpfs/tmp/ipykernel_23853/3355722706.py:24: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_yticklabels([''] + output, fontdict=fontdict)
The translate
function works on batches, so if you have multiple texts to translate you can pass them all at once, which is much more efficient than translating them one at a time:
inputs = [
'Hace mucho frio aqui.', # "It's really cold here."
'Esta es mi vida.', # "This is my life."
'Su cuarto es un desastre.' # "His room is a mess"
]
%%time
for t in inputs:
print(model.translate([t])[0].numpy().decode())
print()
its very cold here . this is my life . her room is a disaster . CPU times: user 495 ms, sys: 13.3 ms, total: 508 ms Wall time: 498 ms
%%time
result = model.translate(inputs)
print(result[0].numpy().decode())
print(result[1].numpy().decode())
print(result[2].numpy().decode())
print()
its very cold here . this is my life . her room is a disaster . CPU times: user 196 ms, sys: 3.73 ms, total: 200 ms Wall time: 195 ms
So overall this text generation function mostly gets the job done, but so you've only used it here in python with eager execution. Let's try to export it next:
Export
If you want to export this model you'll need to wrap the translate
method in a tf.function
. That implementation will get the job done:
class Export(tf.Module):
def __init__(self, model):
self.model = model
@tf.function(input_signature=[tf.TensorSpec(dtype=tf.string, shape=[None])])
def translate(self, inputs):
return self.model.translate(inputs)
export = Export(model)
Run the tf.function
once to compile it:
%%time
_ = export.translate(tf.constant(inputs))
2023-02-16 12:39:17.293304: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.294405: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.295265: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.296188: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.297037: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.297836: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.298644: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.299469: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.300310: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.301214: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.302045: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.302841: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.303900: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.304762: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.305596: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.306437: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.307389: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.308226: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.309029: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.309826: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.310718: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.311634: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.312435: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.313227: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.314021: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.314814: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.315624: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.316422: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.317210: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.318002: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.318793: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.319603: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.320450: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.321368: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.322154: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.322983: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.323856: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.324674: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.325470: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.326262: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.327268: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.328139: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.328941: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.329744: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.330619: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.331981: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.332794: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.333594: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.334389: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:39:17.335213: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } CPU times: user 58.4 s, sys: 1.29 s, total: 59.7 s Wall time: 59.1 s
%%time
result = export.translate(tf.constant(inputs))
print(result[0].numpy().decode())
print(result[1].numpy().decode())
print(result[2].numpy().decode())
print()
its very cold here . this is my life . her room is a disaster . CPU times: user 100 ms, sys: 24.4 ms, total: 125 ms Wall time: 93.8 ms
Now that the function has been traced it can be exported using saved_model.save
:
%%time
tf.saved_model.save(export, 'translator',
signatures={'serving_default': export.translate})
WARNING:absl:Found untraced functions such as embedding_3_layer_call_fn, embedding_3_layer_call_and_return_conditional_losses, embedding_4_layer_call_fn, embedding_4_layer_call_and_return_conditional_losses, cross_attention_2_layer_call_fn while saving (showing 5 of 32). These functions will not be directly callable after loading. INFO:tensorflow:Assets written to: translator/assets INFO:tensorflow:Assets written to: translator/assets CPU times: user 1min 18s, sys: 1.83 s, total: 1min 20s Wall time: 1min 20s
%%time
reloaded = tf.saved_model.load('translator')
_ = reloaded.translate(tf.constant(inputs)) #warmup
2023-02-16 12:40:51.682813: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:40:52.955659: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:40:56.257349: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:40:56.269630: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:40:57.053918: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:40:57.065328: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:40:57.563585: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:40:58.351543: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:40:58.561246: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:40:59.065394: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:40:59.077507: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:40:59.105152: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:40:59.689859: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:40:59.737351: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:40:59.748389: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:00.177877: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:00.189541: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:00.468068: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:00.501785: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:00.512747: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:00.751830: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:00.763742: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:01.135236: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:01.185063: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:01.196169: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:01.337475: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:01.350031: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:01.455592: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:01.467247: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:01.514392: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:01.787624: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:01.861405: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:01.872502: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:01.887599: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:01.898731: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:02.293445: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:02.866395: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:02.878294: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:03.354369: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:03.365960: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:03.472121: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:03.536730: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:03.548405: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:03.561759: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:03.573091: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:03.643087: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:03.654634: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:03.908827: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:03.920944: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:04.001715: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:04.017516: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:04.029051: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:04.135467: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:04.601313: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:04.613051: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:04.651690: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:04.662768: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:04.951372: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:04.963545: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:05.012562: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:05.033902: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:05.053019: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:05.065189: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:05.274154: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:05.617550: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:05.629036: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:07.246057: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:07.257604: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:07.278802: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:07.290697: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:07.375533: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:07.386562: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:07.437852: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:07.449968: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:07.469455: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:07.505127: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:07.516157: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:07.554750: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:07.575914: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:07.930478: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:08.487187: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:08.498697: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:08.813933: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:08.929399: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:09.115332: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:09.171600: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:09.301176: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:09.312391: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:09.469234: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:09.480827: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:09.569388: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:09.839939: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:09.851697: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:10.027171: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:10.108816: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:10.120406: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:10.364208: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:10.375674: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:11.136040: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:11.680839: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:11.700135: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:11.721669: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:11.732824: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:11.780354: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:11.795781: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:11.807401: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:11.854214: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:11.865326: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:11.910651: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:11.970070: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.072707: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.091267: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.102342: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.185919: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.197380: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.368944: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.387810: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.400001: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.422881: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.434921: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.507568: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.518620: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.537534: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.548601: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.587108: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.599116: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.617969: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.636967: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.648292: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.858538: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.870833: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.950011: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:12.961090: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:13.436146: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:13.448010: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:13.466448: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:13.720801: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:13.732403: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:13.751059: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:13.762174: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:14.152807: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:14.165249: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:14.274967: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:15.597864: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:15.611576: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:15.622953: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:41:27.096007: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.097039: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.097890: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.098715: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.099558: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.100392: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.101246: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.102172: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.103041: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.103869: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.104686: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.105496: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.106598: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.107438: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.108233: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.109043: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.109921: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.110752: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.111663: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.112570: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.113386: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.114193: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.115031: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.115952: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.116782: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.117599: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.118409: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.119258: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.120074: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.120887: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.121791: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.122684: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.123511: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.124331: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.125147: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.125961: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.126776: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.127608: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.128423: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.129230: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.130034: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.130846: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.131726: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.132577: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.133383: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.134773: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.135629: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.136461: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.137253: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } 2023-02-16 12:41:27.138075: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } CPU times: user 53.6 s, sys: 1.16 s, total: 54.8 s Wall time: 53.8 s
%%time
result = reloaded.translate(tf.constant(inputs))
print(result[0].numpy().decode())
print(result[1].numpy().decode())
print(result[2].numpy().decode())
print()
its very cold here . this is my life . her room is a disaster . CPU times: user 100 ms, sys: 17.7 ms, total: 118 ms Wall time: 91.3 ms
[Optional] Use a dynamic loop
It's worth noting that this initial implementation is not optimal. It uses a python loop:
for _ in range(max_length):
...
if tf.executing_eagerly() and tf.reduce_all(done):
break
The python loop is relatively simple but when tf.function
converts this to a graph, it statically unrolls that loop. Unrolling the loop has two disadvantages:
- It makes
max_length
copies of the loop body. So the generated graphs take longer to build, save and load. - You have to choose a fixed value for the
max_length
. - You can't
break
from a statically unrolled loop. Thetf.function
version will run the fullmax_length
iterations on every call. That's why thebreak
only works with eager execution. This is still marginally faster than eager execution, but not as fast as it could be.
To fix these shortcomings, the translate_dynamic
method, below, uses a tensorflow loop:
for t in tf.range(max_length):
...
if tf.reduce_all(done):
break
It looks like a python loop, but when you use a tensor as the input to a for
loop (or the condition of a while
loop) tf.function
converts it to a dynamic loop using operations like tf.while_loop
.
There's no need for a max_length
here it's just in case the model gets stuck generating a loop like: the united states of the united states of the united states...
.
On the down side, to accumulate tokens from this dynamic loop you can't just append them to a python list
, you need to use a tf.TensorArray
:
tokens = tf.TensorArray(tf.int64, size=1, dynamic_size=True)
...
for t in tf.range(max_length):
...
tokens = tokens.write(t, next_token) # next_token shape is (batch, 1)
...
tokens = tokens.stack()
tokens = einops.rearrange(tokens, 't batch 1 -> batch t')
This version of the code can be quite a bit more efficient:
@Translator.add_method
def translate(self,
texts,
*,
max_length=500,
temperature=tf.constant(0.0)):
shape_checker = ShapeChecker()
context = self.encoder.convert_input(texts)
batch_size = tf.shape(context)[0]
shape_checker(context, 'batch s units')
next_token, done, state = self.decoder.get_initial_state(context)
# initialize the accumulator
tokens = tf.TensorArray(tf.int64, size=1, dynamic_size=True)
for t in tf.range(max_length):
# Generate the next token
next_token, done, state = self.decoder.get_next_token(
context, next_token, done, state, temperature)
shape_checker(next_token, 'batch t1')
# Collect the generated tokens
tokens = tokens.write(t, next_token)
# if all the sequences are done, break
if tf.reduce_all(done):
break
# Convert the list of generated token ids to a list of strings.
tokens = tokens.stack()
shape_checker(tokens, 't batch t1')
tokens = einops.rearrange(tokens, 't batch 1 -> batch t')
shape_checker(tokens, 'batch t')
text = self.decoder.tokens_to_text(tokens)
shape_checker(text, 'batch')
return text
With eager execution this implementation performs on par with the original:
%%time
result = model.translate(inputs)
print(result[0].numpy().decode())
print(result[1].numpy().decode())
print(result[2].numpy().decode())
print()
its very cold here . this is my life . her room is a disaster . CPU times: user 210 ms, sys: 0 ns, total: 210 ms Wall time: 206 ms
But when you wrap it in a tf.function
you'll notice two differences.
class Export(tf.Module):
def __init__(self, model):
self.model = model
@tf.function(input_signature=[tf.TensorSpec(dtype=tf.string, shape=[None])])
def translate(self, inputs):
return self.model.translate(inputs)
export = Export(model)
First, it's much quicker to trace, since it only creates one copy of the loop body:
%%time
_ = export.translate(inputs)
2023-02-16 12:41:46.486051: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } CPU times: user 4.09 s, sys: 6.79 ms, total: 4.1 s Wall time: 4.04 s
The tf.function
is much faster than running with eager execution, and on small inputs it's often several times faster than the unrolled version, because it can break out of the loop.
%%time
result = export.translate(inputs)
print(result[0].numpy().decode())
print(result[1].numpy().decode())
print(result[2].numpy().decode())
print()
its very cold here . this is my life . her room is a disaster . CPU times: user 30.1 ms, sys: 4.79 ms, total: 34.9 ms Wall time: 23.9 ms
So save this version as well:
%%time
tf.saved_model.save(export, 'dynamic_translator',
signatures={'serving_default': export.translate})
WARNING:absl:Found untraced functions such as embedding_3_layer_call_fn, embedding_3_layer_call_and_return_conditional_losses, embedding_4_layer_call_fn, embedding_4_layer_call_and_return_conditional_losses, cross_attention_2_layer_call_fn while saving (showing 5 of 32). These functions will not be directly callable after loading. INFO:tensorflow:Assets written to: dynamic_translator/assets INFO:tensorflow:Assets written to: dynamic_translator/assets CPU times: user 32.3 s, sys: 76.6 ms, total: 32.3 s Wall time: 32.3 s
%%time
reloaded = tf.saved_model.load('dynamic_translator')
_ = reloaded.translate(tf.constant(inputs)) #warmup
2023-02-16 12:42:21.918796: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:22.258352: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:22.428799: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:22.782068: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:22.804733: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:22.880628: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:22.955635: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:22.996447: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:23.008002: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:23.311822: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:23.739652: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:23.967544: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:24.349505: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:24.413603: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:24.435911: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:24.666030: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:24.690659: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:24.701647: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:24.720415: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:24.769238: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:25.079846: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:25.091919: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:25.528665: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:28.355796: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:28.751755: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:28.763654: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:28.783475: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:28.796271: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:28.807637: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:28.955007: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:28.967431: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:29.035825: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:29.048899: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:29.060019: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:29.383130: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:29.668471: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:29.679844: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:29.965778: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:30.180329: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 13 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:30.191738: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:30.403434: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:30.415210: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:30.670578: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 46 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:30.689693: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:30.766831: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:30.778435: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:30.790838: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond/while' has 14 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:30.801842: W tensorflow/core/common_runtime/graph_constructor.cc:805] Node 'cond' has 4 outputs but the _output_shapes attribute specifies shapes for 48 outputs. Output shapes may be inaccurate. 2023-02-16 12:42:32.016453: W tensorflow/core/grappler/costs/op_level_cost_estimator.cc:690] Error in PredictCost() for the op: op: "Softmax" attr { key: "T" value { type: DT_FLOAT } } inputs { dtype: DT_FLOAT shape { unknown_rank: true } } device { type: "GPU" vendor: "NVIDIA" model: "Tesla P100-PCIE-16GB" frequency: 1328 num_cores: 56 environment { key: "architecture" value: "6.0" } environment { key: "cuda" value: "11020" } environment { key: "cudnn" value: "8100" } num_registers: 65536 l1_cache_size: 24576 l2_cache_size: 4194304 shared_memory_size_per_multiprocessor: 65536 memory_size: 16020013056 bandwidth: 732160000 } outputs { dtype: DT_FLOAT shape { unknown_rank: true } } CPU times: user 13.4 s, sys: 97.4 ms, total: 13.5 s Wall time: 13.4 s
%%time
result = reloaded.translate(tf.constant(inputs))
print(result[0].numpy().decode())
print(result[1].numpy().decode())
print(result[2].numpy().decode())
print()
its very cold here . this is my life . her room is a disaster . CPU times: user 33.3 ms, sys: 3.8 ms, total: 37 ms Wall time: 23.6 ms
Next steps
- Download a different dataset to experiment with translations, for example, English to German, or English to French.
- Experiment with training on a larger dataset, or using more epochs.
- Try the transformer tutorial which implements a similar translation task but uses transformer layers instead of RNNs. This version also uses a
text.BertTokenizer
to implement word-piece tokenization. - Visit the
tensorflow_addons.seq2seq
tutorial, which demonstrates a higher-level functionality for implementing this sort of sequence-to-sequence model, such asseq2seq.BeamSearchDecoder
.