TensorFlow Data Validation Anomalies Reference

Stay organized with collections Save and categorize content based on your preferences.

TFDV checks for anomalies by comparing a schema and statistics proto(s). The following chart lists the anomaly types that TFDV can detect, the schema and statistics fields that are used to detect each anomaly type, and the condition(s) under which each anomaly type is detected.

  • BOOL_TYPE_BIG_INT

    • Schema Fields:
      • feature.bool_domain
      • feature.type
    • Statistics Fields:
      • feature.num_stats.max
    • Detection Condition:
      • feature.type == INT and
      • feature.bool_domain is specified and
      • feature.num_stats.max > 1
  • BOOL_TYPE_BYTES_NOT_INT

    • Anomaly type not detected in TFDV
  • BOOL_TYPE_BYTES_NOT_STRING

    • Anomaly type not detected in TFDV
  • BOOL_TYPE_FLOAT_NOT_INT

    • Anomaly type not detected in TFDV
  • BOOL_TYPE_FLOAT_NOT_STRING

    • Anomaly type not detected in TFDV
  • BOOL_TYPE_INT_NOT_STRING

    • Anomaly type not detected in TFDV
  • BOOL_TYPE_SMALL_INT

    • Schema Fields:
      • feature.bool_domain
      • feature.type
    • Statistics Fields:
      • feature.num_stats.min
    • Detection Condition:
      • feature.type == INT and
      • feature.bool_domain is specified and
      • feature.num_stats.min < 0
  • BOOL_TYPE_STRING_NOT_INT

    • Anomaly type not detected in TFDV
  • BOOL_TYPE_UNEXPECTED_STRING

    • Schema Fields:
      • feature.bool_domain
      • feature.type
    • Statistics Fields:
      • feature.string_stats.rank_histogram*
    • Detection Condition:
      • at least one value in rank_histogram is not feature.bool_domain.true_value or feature.bool_domain.false_value
  • BOOL_TYPE_UNEXPECTED_FLOAT

    • Schema Fields:
      • feature.bool_domain
      • feature.type
    • Statistics Fields:
      • feature.num_stats.min
      • feature.num_stats.max
      • feature.num_stats.histograms.num_nan
      • feature.num_stats.histograms.buckets.low_value
      • feature.num_stats.histograms.buckets.high_value
    • Detection Condition:
      • feature.type == FLOAT and
      • feature.bool_domain is specified and
      • feature.num_stats.min != 0 and feature.num_stats.min != 1 or
        feature.num_stats.max != 0 and feature.num_stats.max != 1 or
        feature.num_stats.histograms.num_nan > 0 or
        feature.num_stats.histograms.buckets.low_value < 0 or
        feature.num_stats.histograms.buckets.high_value > 1 or
        feature.num_stats.histograms.buckets.low_value > 0 and high_value < 1
  • ENUM_TYPE_BYTES_NOT_STRING

    • Anomaly type not detected in TFDV
  • ENUM_TYPE_FLOAT_NOT_STRING

    • Anomaly type not detected in TFDV
  • ENUM_TYPE_INT_NOT_STRING

    • Anomaly type not detected in TFDV
  • ENUM_TYPE_INVALID_UTF8

    • Statistics Fields:
      • feature.string_stats.invalid_utf8_count
    • Detection Condition:
      • invalid_utf8_count > 0
  • ENUM_TYPE_UNEXPECTED_STRING_VALUES

    • Schema Fields:
      • string_domain and feature.domain; or feature.string_domain
      • feature.distribution_constraints.min_domain_mass
    • Statistics Fields:
      • feature.string_stats.rank_histogram*
    • Detection Condition:
      • (number of values in rank_histogram that are not in domain / total number of values) > (1 - feature.distribution_constraints.min_domain_mass); or
      • feature.distribution_constraints.min_domain_mass == 1.0 and there are values in the histogram that are not in the domain
  • FEATURE_TYPE_HIGH_NUMBER_VALUES

    • Schema Fields:
      • feature.value_count.max
      • feature.value_counts.value_count.max
    • Statistics Fields:
      • feature.common_stats.max_num_values
      • feature.common_stats.presence_and_valency_stats.max_num_values
    • Detection Condition:
      • feature.value_count.max is specified and
      • feature.common_stats.max_num_values > feature.value_count.max; or
      • feature.value_counts is specified and
      • feature.common_stats.presence_and_valency_stats.max_num_values > feature.value_counts.value_count.max at a given nestedness level
  • FEATURE_TYPE_LOW_FRACTION_PRESENT

    • Schema Fields:
      • feature.presence.min_fraction
    • Statistics Fields:
      • feature.common_stats.num_non_missing*
      • num_examples*
    • Detection Condition:
      • feature.presence.min_fraction is specified and (feature.common_stats.num_non_missing / num_examples) < feature.presence.min_fraction; or
      • feature.presence.min_fraction == 1.0 and common_stats.num_missing != 0
  • FEATURE_TYPE_LOW_NUMBER_PRESENT

    • Schema Fields:
      • feature.presence.min_count
    • Statistics Fields:
      • feature.common_stats.num_non_missing*
    • Detection Condition:
      • feature.presence.min_count is specified and
      • feature.common_stats.num_non_missing == 0 or feature.common_stats.num_non_missing < feature.presence.min_count
  • FEATURE_TYPE_LOW_NUMBER_VALUES

    • Schema Fields:
      • feature.value_count.min
      • feature.value_counts.value_count.min
    • Statistics Fields:
      • feature.common_stats.min_num_values
      • feature.common_stats.presence_and_valency_stats.min_num_values
    • Detection Condition:
      • feature.value_count.min is specified and
      • feature.common_stats.min_num_values < feature.value_count.min; or
      • feature.value_counts is specified and
      • feature.common_stats.presence_and_valency_stats.min_num_values < feature.value_counts.value_count.min at a given nestedness level
  • FEATURE_TYPE_NOT_PRESENT

    • Schema Fields:
      • feature.in_environment or feature.not_in_environment or schema.default_environment
      • feature.lifecycle_stage
      • feature.presence.min_count or feature.presence.min_fraction
    • Statistics Fields:
      • feature.common_stats.num_non_missing*
    • Detection Condition:
      • feature.lifecycle_stage != PLANNED, ALPHA, DEBUG, or DEPRECATED and
      • feature.presence.min_count > 0 or feature.presence.min_fraction > 0 and
      • feature.in_environment == current environment or feature.not_in_environment != current environment or schema.default_environment != current environment and
      • common_stats.num_non_missing* == 0
  • FEATURE_TYPE_NO_VALUES

    • Anomaly type not detected in TFDV
  • FEATURE_TYPE_UNEXPECTED_REPEATED

    • Anomaly type not detected in TFDV
  • FEATURE_TYPE_HIGH_UNIQUE

    • Schema Fields:
      • feature.unique_constraints.max
    • Statistics Fields:
      • feature.string_stats.unique
    • Detection Condition:
      • feature.string_stats.unique > feature.unique_constraints.max
  • FEATURE_TYPE_LOW_UNIQUE

    • Schema Fields:
      • feature.unique_constraints.min
    • Statistics Fields:
      • feature.string_stats.unique
    • Detection Condition:
      • feature.string_stats.unique < feature.unique_constraints.min
  • FEATURE_TYPE_NO_UNIQUE

    • Schema Fields:
      • feature.unique_constraints
    • Statistics Fields:
      • feature.string_stats.unique
    • Detection Condition:
      • feature.unique_constraints specified but no feature.string_stats.unique present (as is the case where the feature is not a string or categorical)
  • FLOAT_TYPE_BIG_FLOAT

    • Schema Fields:
      • feature.float_domain.max
    • Statistics Fields:
      • feature.type
      • feature.num_stats.max or feature.string_stats.rank_histogram
    • Detection Condition:
      • feature.type == FLOAT, BYTES, or STRING and
      • if feature.type is FLOAT: feature.num_stats.max > feature.float_domain.max
      • if feature.type is BYTES or STRING: maximum value in feature.string_stats.rank_histogram (when converted to float) > feature.float_domain.max
  • FLOAT_TYPE_NOT_FLOAT

    • Anomaly type not detected in TFDV
  • FLOAT_TYPE_SMALL_FLOAT

    • Schema Fields:
      • feature.float_domain.min
    • Statistics Fields:
      • feature.type
      • feature.num_stats.min or feature.string_stats.rank_histogram
    • Detection Condition:
      • feature.type == FLOAT, BYTES, or STRING and
      • if feature.type is FLOAT: feature.num_stats.min < feature.float_domain.min
      • if feature.type is BYTES or STRING: minimum value in feature.string_stats.rank_histogram (when converted to float) < feature.float_domain.min
  • FLOAT_TYPE_STRING_NOT_FLOAT

    • Schema Fields:
      • feature.float_domain
    • Statistics Fields:
      • feature.type
      • feature.string_stats.rank_histogram
    • Detection Condition:
      • feature.type == BYTES or STRING and
      • feature.string_stats.rank_histogram has at least one value that cannot be converted to a float
  • FLOAT_TYPE_NON_STRING

    • Anomaly type not detected in TFDV
  • FLOAT_TYPE_UNKNOWN_TYPE_NUMBER

    • Anomaly type not detected in TFDV
  • FLOAT_TYPE_HAS_NAN

    • Schema Fields:
      • feature.float_domain.disallow_nan
    • Statistics Fields:
      • feature.type
      • feature.num_stats.histograms.num_nan
    • Detection Condition:
      • float_domain.disallow_nan is true and
      • feature.num_stats.histograms.num_nan > 0
  • FLOAT_TYPE_HAS_INF

    • Schema Fields:
      • feature.float_domain.disallow_inf
    • Statistics Fields:
      • feature.type
      • feature.num_stats.min
      • feature.num_stats.max
    • Detection Condition:
      • float_domain.disallow_inf is true and
      • feature.num_stats.min == inf/-inf or
      • feature.num_stats.max == inf/-inf
  • INT_TYPE_BIG_INT

    • Schema Fields:
      • feature.int_domain.max
    • Statistics Fields:
      • feature.type
      • feature.num_stats.max or feature.string_stats.rank_histogram
    • Detection Condition:
      • feature.type == INT, BYTES, or STRING and
      • if feature.type is INT: feature.num_stats.max > feature.int_domain.max
      • if feature.type is BYTES or STRING: maximum value in feature.string_stats.rank_histogram (when converted to int) > feature.int_domain.max
  • INT_TYPE_INT_EXPECTED

    • Anomaly type not detected in TFDV
  • INT_TYPE_NOT_INT_STRING

    • Schema Fields:
      • feature.int_domain
    • Statistics Fields:
      • feature.type
      • feature.string_stats.rank_histogram
    • Detection Condition:
      • feature.type == BYTES or STRING and
      • feature.string_stats.rank_histogram has at least one value that cannot be converted to an int
  • INT_TYPE_NOT_STRING

    • Anomaly type not detected in TFDV
  • INT_TYPE_SMALL_INT

    • Schema Fields:
      • feature.int_domain.min
    • Statistics Fields:
      • feature.type
      • feature.num_stats.min or feature.string_stats.rank_histogram
    • Detection Condition:
      • feature.type == INT, BYTES, or STRING and
      • if feature.type is INT: feature.num_stats.min < feature.int_domain.min
      • if feature.type is BYTES or STRING: minimum value in feature.string_stats.rank_histogram (when converted to int) < feature.int_domain.min
  • INT_TYPE_STRING_EXPECTED

    • Anomaly type not detected in TFDV
  • INT_TYPE_UNKNOWN_TYPE_NUMBER

    • Anomaly type not detected in TFDV
  • LOW_SUPPORTED_IMAGE_FRACTION

    • Schema Fields:
      • feature.image_domain.minimum_supported_image_fraction
    • Statistics Fields:
      • feature.custom_stats.rank_histogram for the custom_stats with name image_format_histogram. Note that semantic domain stats must be enabled for the image_format_histogram to be generated and for this validation to be performed. Semantic domain stats are not generated by default.
    • Detection Condition:
      • The fraction of values that are supported Tensorflow image types to all image types is less than feature.image_domain.minimum_supported_image_fraction.
  • SCHEMA_MISSING_COLUMN

    • Schema Fields:
      • feature.in_environment or feature.not_in_environment or schema.default_environment
      • feature.lifecycle_stage
      • feature.presence.min_count or feature.presence.min_fraction
    • Detection Condition:
      • feature.lifecycle_stage != PLANNED, ALPHA, DEBUG, or DEPRECATED and
      • feature.presence.min_count > 0 or feature.presence.min_fraction > 0 and
      • feature.in_environment == current environment or feature.not_in_environment != current environment or schema.default_environment != current environment and
      • no feature with the specified name/path is found in the statistics proto
  • SCHEMA_NEW_COLUMN

    • Detection Condition:
      • there is a feature in the statistics proto but no feature with its name/path in the schema proto
  • SCHEMA_TRAINING_SERVING_SKEW

    • Anomaly type not detected in TFDV
  • STRING_TYPE_NOW_FLOAT

    • Anomaly type not detected in TFDV
  • STRING_TYPE_NOW_INT

    • Anomaly type not detected in TFDV
  • COMPARATOR_CONTROL_DATA_MISSING

    • Schema Fields:
      • feature.skew_comparator.infinity_norm.threshold
      • feature.drift_comparator.infinity_norm.threshold
    • Detection Condition:
      • control statistics proto (i.e., serving statistics for skew or previous statistics for drift) is available but does not contain the specified feature
  • COMPARATOR_TREATMENT_DATA_MISSING

    • Anomaly type not detected in TFDV
  • COMPARATOR_L_INFTY_HIGH

    • Schema Fields:
      • feature.skew_comparator.infinity_norm.threshold
      • feature.drift_comparator.infinity_norm.threshold
    • Statistics Fields:
      • feature.string_stats.rank_histogram*
    • Detection Condition:
      • L-infinity norm of the vector that represents the difference between the normalized counts from the feature.string_stats.rank_histogram in the control statistics (i.e., serving statistics for skew or previous statistics for drift) and the treatment statistics (i.e., training statistics for skew or current statistics for drift) > feature.skew_comparator.infinity_norm.threshold or feature.drift_comparator.infinity_norm.threshold
  • COMPARATOR_NORMALIZED_ABSOLUTE_DIFFERENCE_HIGH

    • Schema Fields:
      • feature.skew_comparator.normalized_abs_difference.threshold
      • feature.drift_comparator.normalized_abs_difference.threshold
    • Statistics Fields:
      • feature.string_stats.rank_histogram
    • Detection Condition:
      • The normalized absolute count difference of value counts from the feature.string_stats.rank_histogram in the control statistics (i.e., serving statistics for skew or previous statistics for drift) and the treatment statistics (i.e., training statistics for skew or current statistics for drift) exceeded feature.skew_comparator.normalized_abs_difference.threshold or feature.drift_comparator.normalized_abs_difference.threshold. Count differences are normalized by the total count across both conditions.
  • COMPARATOR_JENSEN_SHANNON_DIVERGENCE_HIGH

    • Schema Fields:
      • feature.skew_comparator.jensen_shannon_divergence.threshold
      • feature.drift_comparator.jensen_shannon_divergence.threshold
    • Statistics Fields:
      • feature.num_stats.histograms* of type STANDARD
    • Detection Condition:
      • Approximate Jensen-Shannon divergence computed between in the control statistics (i.e., serving statistics for skew or previous statistics for drift) and the treatment statistics (i.e., training statistics for skew or current statistics for drift) > feature.skew_comparator.jensen_shannon_divergence.threshold or feature.drift_comparator.jensen_shannon_divergence.threshold. The approximate Jensen-Shannon divergence is computed based on the normalized sample counts in both num_stats standard histogram and string_stats rank histogram.
  • NO_DATA_IN_SPAN

    • Anomaly type not detected in TFDV
  • SPARSE_FEATURE_MISSING_VALUE

    • Schema Fields:
      • sparse_feature.value_feature
    • Statistics Fields:
      • feature.custom_stats with “missing_value” as name
    • Detection Condition:
      • missing_value custom stat != 0
  • SPARSE_FEATURE_MISSING_INDEX

    • Schema Fields:
      • sparse_feature.index_feature
    • Statistics Fields:
      • feature.custom_stats with “missing_index” as name
    • Detection Condition:
      • missing_index custom stat contains any value != 0
  • SPARSE_FEATURE_LENGTH_MISMATCH

    • Schema Fields:
      • sparse_feature.value_feature
      • sparse_feature.index_feature
    • Statistics Fields:
      • feature.custom_stats with "min_length_diff” or "max_length_diff" as name
    • Detection Condition:
      • min_length_diff or max_length_diff custom stat contains any value != 0
  • SPARSE_FEATURE_NAME_COLLISION

    • Schema Fields:
      • sparse_feature.name
      • sparse_feature.lifecycle_stage
      • feature.name
      • feature.lifecycle_stage
    • Detection Condition:
      • sparse_feature.lifecycle_stage != PLANNED, ALPHA, DEBUG, or DEPRECATED and
      • feature.lifecycle_stage != PLANNED, ALPHA, DEBUG, or DEPRECATED and
      • sparse_feature.name == feature.name
  • SEMANTIC_DOMAIN_UPDATE

    • Schema Fields:
      • feature.domain_info
    • Statistics Fields:
      • feature.custom_stats with "domain_info" as name
    • Detection Condition:
      • feature.domain_info is not already set in the schema and
      • there is a single domain_info custom stat for the feature
  • COMPARATOR_LOW_NUM_EXAMPLES

    • Schema Fields:
      • schema.dataset_constraints.num_examples_drift_comparator.min_fraction_threshold
      • schema.dataset_constraints.num_examples_version_comparator.min_fraction_threshold
    • Statistics Fields:
      • num_examples*
    • Detection Condition:
      • num_examples > 0 and
      • previous statistics proto is available and
      • num_examples / previous statistics num_examples < comparator min_fraction_threshold
  • COMPARATOR_HIGH_NUM_EXAMPLES

    • Schema Fields:
      • schema.dataset_constraints.num_examples_drift_comparator.max_fraction_threshold
      • schema.dataset_constraints.num_examples_version_comparator.max_fraction_threshold
    • Statistics Fields:
      • num_examples*
    • Detection Condition:
      • num_examples > 0 and
      • previous statistics proto is available and
      • num_examples / previous statistics num_examples > comparator max_fraction_threshold
  • DATASET_LOW_NUM_EXAMPLES

    • Schema Fields:
      • schema.dataset_constraints.min_examples_count
    • Statistics Fields:
      • num_examples*
    • Detection Condition:
      • num_examples < dataset_constraints.min_examples_count
  • DATASET_HIGH_NUM_EXAMPLES

    • Schema Fields:
      • schema.dataset_constraints.max_examples_count
    • Statistics Fields:
      • num_examples*
    • Detection Condition:
      • num_examples > dataset_constraints.max_examples_count
  • WEIGHTED_FEATURE_NAME_COLLISION

    • Schema Fields:
      • weighted_feature.name
      • weighted_feature.lifecycle_stage
      • sparse_feature.name
      • sparse_feature.lifecycle_stage
      • feature.name
      • feature.lifecycle_stage
    • Detection Condition:
      • weighted_feature.lifecycle_stage != PLANNED, ALPHA, DEBUG, orDEPRECATED and either:
        • feature.lifecycle_stage != PLANNED, ALPHA, DEBUG, or DEPRECATED and weighted_feature.name == feature.name
        • sparse_feature.lifecycle_stage != PLANNED, ALPHA, DEBUG, orDEPRECATED and weighted_feature.name == sparse_feature.name
  • WEIGHTED_FEATURE_MISSING_VALUE

    • Schema Fields:
      • weighted_feature.feature
    • Statistics Fields:
      • feature.custom_stats with “missing_value” as name
    • Detection Condition:
      • missing_value custom stat != 0
  • WEIGHTED_FEATURE_MISSING_WEIGHT

    • Schema Fields:
      • weighted_feature.weight_feature
    • Statistics Fields:
      • feature.custom_stats with “missing_weight” as name
    • Detection Condition:
      • missing_weight custom stat != 0
  • WEIGHTED_FEATURE_LENGTH_MISMATCH

    • Schema Fields:
      • weighted_feature.feature
      • weighted_feature.weight_feature
    • Statistics Fields:
      • feature.custom_stats with "min_weighted_length_diff” or "max_weight_length_diff" as name
    • Detection Condition:
      • min_weight_length_diff or max_weight_length_diff custom stat != 0
  • VALUE_NESTEDNESS_MISMATCH

    • Schema Fields:
      • feature.value_count
      • feature.value_counts
    • Statistics Fields:
      • feature.common_stats.presence_and_valency_stats
    • Detection Condition:
      • feature.value_count is specified, and there is a repeated presence_and_valency_stats for the feature (which indicates a nestedness level that is greater than one)
      • feature.value_counts is specified, and the number of times the presence_and_valency stats for the feature is repeated does not match the number of times value_count is repeated within feature.value_counts
  • DOMAIN_INVALID_FOR_TYPE

    • Schema Fields:

      • feature.type
      • feature.domain_info
    • Statistics Fields:

      • type for each feature
    • Detection Condition:

      • feature.domain_info does not match feature's type (e.g., int_domain is specified, but feature's type is float)
      • feature is of type BYTES in statistics but feature.domain_info is of an incompatible type
  • FEATURE_MISSING_NAME

    • Schema Fields:
      • feature.name
    • Detection Condition:
      • feature.name is not specified
  • FEATURE_MISSING_TYPE

    • Schema Fields:
      • feature.type
    • Detection Condition:
      • feature.type is not specified
  • INVALID_SCHEMA_SPECIFICATION

    • Schema Fields:
      • feature.domain_info
      • feature.presence.min_fraction
      • feature.value_count.min
      • feature.value_count.max
      • feature.distribution_constraints
    • Detection Condition:
      • feature.presence.min_fraction < 0.0 or > 1.0
      • feature.value_count.min < 0 or > feature.value_count.max
      • a bool, int, float, struct, or semantic domain is specified for a feature and feature.distribution_constraints is also specified for that feature
      • feature.distribution_constraints is specified for a feature, but neither a schema-level domain nor feature.string_domain is specified for that feature
  • INVALID_DOMAIN_SPECIFICATION

    • Schema Fields:
      • feature.domain_info
      • feature.bool_domain
      • feature.string_domain
    • Detection Condition:
      • unknown feature.domain_info type is specified
      • feature.domain is specified, but there is no matching domain specified at the schema level
      • feature.bool_domain.true_value == feature.bool_domain.false_value
      • repeated values in feature.string_domain
      • feature.string_domain exceeds the maximum size
  • UNEXPECTED_DATA_TYPE

    • Schema Fields:
      • feature.type
    • Statistics Fields:
      • type for each feature
    • Detection Condition:
      • feature's type is not of type specified in feature.type
  • SEQUENCE_VALUE_TOO_FEW_OCCURRENCES

    • Schema Fields:
      • feature.natural_language_domain.token_constraints.min_per_sequence
    • Statistics Fields:
      • feature.custom_stats.nl_statistics.token_statistics.per_sequence_min_frequency
    • Detection Condition:
      • min_per_sequence > per_sequence_min_frequency
  • SEQUENCE_VALUE_TOO_MANY_OCCURRENCES

    • Schema Fields:
      • feature.natural_language_domain.token_constraints.max_per_sequence
    • Statistics Fields:
      • feature.custom_stats.nl_statistics.token_statistics.per_sequence_max_frequency
    • Detection Condition:
      • max_per_sequence < per_sequence_max_frequency
  • SEQUENCE_VALUE_TOO_SMALL_FRACTION

    • Schema Fields:
      • feature.natural_language_domain.token_constraints.min_fraction_of_sequences
    • Statistics Fields:
      • feature.custom_stats.nl_statistics.token_statistics.fraction_of_sequences
    • Detection Condition:
      • min_fraction_of_sequences > fraction_of_sequences
  • SEQUENCE_VALUE_TOO_LARGE_FRACTION

    • Schema Fields:
      • feature.natural_language_domain.token_constraints.max_fraction_of_sequences
    • Statistics Fields:
      • feature.custom_stats.nl_statistics.token_statistics.fraction_of_sequences
    • Detection Condition:
      • max_fraction_of_sequences < fraction_of_sequences
  • FEATURE_COVERAGE_TOO_LOW

    • Schema Fields:
      • feature.natural_language_domain.coverage.min_coverage
    • Statistics Fields:
      • feature.custom_stats.nl_statistics.feature_coverage
    • Detection Condition:
      • feature_coverage < coverage.min_coverage
  • FEATURE_COVERAGE_TOO_SHORT_AVG_TOKEN_LENGTH

    • Schema Fields:
      • feature.natural_language_domain.coverage.min_avg_token_length
    • Statistics Fields:
      • feature.custom_stats.nl_statistics.avg_token_length
    • Detection Condition:
      • avg_token_length < min_avg_token_length
  • NLP_WRONG_LOCATION

    • Anomaly type not detected in TFDV
  • EMBEDDING_SHAPE_INVALID

    • Anomaly type not detected in TFDV
  • MAX_IMAGE_BYTE_SIZE_EXCEEDED

    • Schema Fields:
      • feature.image_domain.max_image_byte_size
    • Statistics Fields:
      • feature.bytes_stats.max_num_bytes_int
    • Detection Condition:
      • max_num_bytes_int > max_image_byte_size
  • INVALID_FEATURE_SHAPE

    • Schema Fields:
      • feature.shape
    • Statistics Fields:
      • feature.common_stats.num_missing
      • feature.common_stats.min_num_values
      • feature.common_stats.max_num_values
      • feature.common_stats.presence_and_valency_stats.num_missing
      • feature.common_stats.presence_and_valency_stats.min_num_values
      • feature.common_stats.presence_and_valency_stats.max_num_values
      • feature.common_stats.weighted_presence_and_valency_stats
    • Detection Condition:
      • feature.shape is specified, and one of the following:
        • the feature may be missing (num_missing != 0) at some nest level.
        • the feature may have variable number of values ( min_num_values != max_num_values) at some nest level
        • the specified shape is not compatible with the feature's value count stats. For example, shape [16] is compatible with (min_num_values == max_num_values == [2, 2, 4] (for a 3-nested feature)).
  • STATS_NOT_AVAILBLE

    • Anomaly occurs when stats needed to validate constraints are not present.
  • DERIVED_FEATURE_BAD_LIFECYCLE

    • Schema Fields:
      • feature.lifecycle_stage
    • Statistics Fields:

      • feature.derived_source
    • Detection Condition:

      • feature.lifecycle_stage is not one of DERIVED or DISABLED, and feature.derived_source is present, indicating that this is a derived feature.
  • DERIVED_FEATURE_INVALID_SOURCE

    • Schema Fields:
      • feature.derived_source
    • Statistics Fields:

      • feature.derived_source
    • Detection Condition:

      • statistics.feature.derived_source is present for a feature, but the corresponding schema.feature.derived_source is not.

* If a weighted statistic is available for this field, it will be used instead of the non-weighted statistic.