מדריך רכיבי TFX Keras

מבוא רכיב אחר רכיב ל-TensorFlow Extended (TFX)

מדריך זה מבוסס Colab יעבור באופן אינטראקטיבי על כל רכיב מובנה של TensorFlow Extended (TFX).

הוא מכסה כל שלב בצינור למידת מכונה מקצה לקצה, החל מהטמעת נתונים ועד לדחיפת מודל להגשה.

כשתסיים, ניתן לייצא את התוכן של מחברת זו באופן אוטומטי כקוד מקור של צינור TFX, אותו תוכל לתזמר עם Apache Airflow ו- Apache Beam.

רקע כללי

מחברת זו מדגים כיצד להשתמש ב-TFX בסביבת Jupyter/Colab. כאן, אנו עוברים על הדוגמה של Chicago Taxi במחברת אינטראקטיבית.

עבודה במחברת אינטראקטיבית היא דרך שימושית להכיר את המבנה של צינור TFX. זה שימושי גם כשאתה מבצע פיתוח של צינורות משלך כסביבת פיתוח קלת משקל, אבל עליך להיות מודע לכך שיש הבדלים באופן שבו מחברות אינטראקטיביות מסודרות, ובאופן שבו הן ניגשים לחפצי מטא נתונים.

תִזמוּר

בפריסת הפקה של TFX, תשתמש בתזמר כגון Apache Airflow, Kubeflow Pipelines או Apache Beam כדי לתזמן גרף צינור מוגדר מראש של רכיבי TFX. במחברת אינטראקטיבית, המחברת עצמה היא המתזמר, ומריץ כל רכיב TFX תוך כדי הפעלת תאי המחברת.

מטא נתונים

בפריסת ייצור של TFX, תוכל לגשת למטא נתונים דרך ה-API של ML Metadata (MLMD). MLMD מאחסן מאפייני מטא נתונים במסד נתונים כגון MySQL או SQLite, ומאחסן את עומסי המטא נתונים בחנות מתמשכת כגון במערכת הקבצים שלך. במחשב נייד אינטראקטיבי, הוא נכסי מטענים מאוחסנים במסד נתוני SQLite חלוף ב /tmp המדריך בשרת המחברת או Colab Jupyter.

להכין

ראשית, אנו מתקינים ומייבאים את החבילות הדרושות, מגדירים נתיבים ומורידים נתונים.

שדרוג פיפ

כדי להימנע משדרוג Pip במערכת בעת הפעלה מקומית, בדוק כדי לוודא שאנו פועלים ב-Colab. ניתן כמובן לשדרג מערכות מקומיות בנפרד.

try:
  import colab
  !pip install --upgrade pip
except:
  pass

התקן TFX

pip install -U tfx

הפעלת מחדש את זמן הריצה?

אם אתה משתמש ב-Google Colab, בפעם הראשונה שאתה מפעיל את התא שלמעלה, עליך להפעיל מחדש את זמן הריצה (Runtime > Restart runtime...). זה בגלל האופן שבו קולאב טוען חבילות.

ייבוא ​​חבילות

אנו מייבאים חבילות נחוצות, כולל מחלקות רכיבי TFX סטנדרטיות.

import os
import pprint
import tempfile
import urllib

import absl
import tensorflow as tf
import tensorflow_model_analysis as tfma
tf.get_logger().propagate = False
pp = pprint.PrettyPrinter()

from tfx import v1 as tfx
from tfx.orchestration.experimental.interactive.interactive_context import InteractiveContext

%load_ext tfx.orchestration.experimental.interactive.notebook_extensions.skip

בוא נבדוק את גרסאות הספרייה.

print('TensorFlow version: {}'.format(tf.__version__))
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.7.0
TFX version: 1.5.0

הגדר נתיבי צינור

# This is the root directory for your TFX pip package installation.
_tfx_root = tfx.__path__[0]

# This is the directory containing the TFX Chicago Taxi Pipeline example.
_taxi_root = os.path.join(_tfx_root, 'examples/chicago_taxi_pipeline')

# This is the path where your model will be pushed for serving.
_serving_model_dir = os.path.join(
    tempfile.mkdtemp(), 'serving_model/taxi_simple')

# Set up logging.
absl.logging.set_verbosity(absl.logging.INFO)

הורד נתונים לדוגמה

אנו מורידים את מערך הנתונים לדוגמה לשימוש בצינור ה-TFX שלנו.

בסיס הנתונים שאנו משתמשים בו הוא Taxi Trips הנתונים שפורסמו על ידי עיריית שיקגו. העמודות במערך נתונים זה הן:

אזור_קהילת_איסוף דמי נסיעה חודש_תחילת_טיול
שעה_התחלה_טיול יום_התחלה_טיול trip_start_timestamp
pickup_latitude איסוף_אורך dropoff_latitude
dropoff_longitude trip_miles אוסף_מפקד האוכלוסין
ערכת_מפקד_הורדה סוג תשלום חֶברָה
trip_seconds אזור_קהילת ירידה טיפים

עם מערך נתונים זה, נוכל לבנות מודל שמנבא את tips של טיול.

_data_root = tempfile.mkdtemp(prefix='tfx-data')
DATA_PATH = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/chicago_taxi_pipeline/data/simple/data.csv'
_data_filepath = os.path.join(_data_root, "data.csv")
urllib.request.urlretrieve(DATA_PATH, _data_filepath)
('/tmp/tfx-datacz9xjro6/data.csv', <http.client.HTTPMessage at 0x7f889af49250>)

עיין במהירות בקובץ ה-CSV.

head {_data_filepath}
pickup_community_area,fare,trip_start_month,trip_start_hour,trip_start_day,trip_start_timestamp,pickup_latitude,pickup_longitude,dropoff_latitude,dropoff_longitude,trip_miles,pickup_census_tract,dropoff_census_tract,payment_type,company,trip_seconds,dropoff_community_area,tips
,12.45,5,19,6,1400269500,,,,,0.0,,,Credit Card,Chicago Elite Cab Corp. (Chicago Carriag,0,,0.0
,0,3,19,5,1362683700,,,,,0,,,Unknown,Chicago Elite Cab Corp.,300,,0
60,27.05,10,2,3,1380593700,41.836150155,-87.648787952,,,12.6,,,Cash,Taxi Affiliation Services,1380,,0.0
10,5.85,10,1,2,1382319000,41.985015101,-87.804532006,,,0.0,,,Cash,Taxi Affiliation Services,180,,0.0
14,16.65,5,7,5,1369897200,41.968069,-87.721559063,,,0.0,,,Cash,Dispatch Taxi Affiliation,1080,,0.0
13,16.45,11,12,3,1446554700,41.983636307,-87.723583185,,,6.9,,,Cash,,780,,0.0
16,32.05,12,1,1,1417916700,41.953582125,-87.72345239,,,15.4,,,Cash,,1200,,0.0
30,38.45,10,10,5,1444301100,41.839086906,-87.714003807,,,14.6,,,Cash,,2580,,0.0
11,14.65,1,1,3,1358213400,41.978829526,-87.771166703,,,5.81,,,Cash,,1080,,0.0

כתב ויתור: אתר זה מספק יישומים המשתמשים בנתונים ששונו לשימוש מהמקור המקורי שלו, www.cityofchicago.org, האתר הרשמי של עיריית שיקגו. עיריית שיקגו אינה טוענת באשר לתוכן, לדיוק, לעדכניות או לשלמות של כל אחד מהנתונים המסופקים באתר זה. הנתונים המופיעים באתר זה כפופים לשינויים בכל עת. מובן כי השימוש בנתונים המסופקים באתר זה נעשה על אחריותו בלבד.

צור את ה-InteractiveContext

לבסוף, אנו יוצרים InteractiveContext, שיאפשר לנו להפעיל רכיבי TFX באופן אינטראקטיבי במחברת זו.

# Here, we create an InteractiveContext using default parameters. This will
# use a temporary directory with an ephemeral ML Metadata database instance.
# To use your own pipeline root or database, the optional properties
# `pipeline_root` and `metadata_connection_config` may be passed to
# InteractiveContext. Calls to InteractiveContext are no-ops outside of the
# notebook.
context = InteractiveContext()
WARNING:absl:InteractiveContext pipeline_root argument not provided: using temporary directory /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq as root for pipeline outputs.
WARNING:absl:InteractiveContext metadata_connection_config not provided: using SQLite ML Metadata database at /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/metadata.sqlite.

הפעל רכיבי TFX באופן אינטראקטיבי

בתאים הבאים, אנו יוצרים רכיבי TFX אחד אחד, מפעילים כל אחד מהם ומדמיינים את חפצי הפלט שלהם.

דוגמה Gen

ExampleGen הרכיב הוא בדרך כלל בתחילת צינור TFX. זה יהיה:

  1. פיצול נתונים לקבוצות אימון והערכה (כברירת מחדל, 2/3 אימון + 1/3 הערכה)
  2. נתונים המר לתוך tf.Example הפורמט (למד עוד כאן )
  3. העתיקו נתונים לתוך _tfx_root הספרייה עבור רכיבים אחרים גישה

ExampleGen לוקח כקלט את הנתיב אל מקור הנתונים שלך. במקרה שלנו, זה הוא _data_root הנתיב המכיל את CSV שהורידה.

example_gen = tfx.components.CsvExampleGen(input_base=_data_root)
context.run(example_gen)
INFO:absl:Running driver for CsvExampleGen
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:select span and version = (0, None)
INFO:absl:latest span and version = (0, None)
INFO:absl:Running executor for CsvExampleGen
INFO:absl:Generating examples.
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
INFO:absl:Processing input csv data /tmp/tfx-datacz9xjro6/* to TFExample.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
INFO:absl:Examples generated.
INFO:absl:Running publisher for CsvExampleGen
INFO:absl:MetadataStore with DB connection initialized

בואו לבחון את ממצאי הפלט של ExampleGen . רכיב זה מייצר שני חפצים, דוגמאות אימון ודוגמאות הערכה:

artifact = example_gen.outputs['examples'].get()[0]
print(artifact.split_names, artifact.uri)
["train", "eval"] /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/CsvExampleGen/examples/1

אנו יכולים גם להסתכל על שלוש דוגמאות ההדרכה הראשונות:

# Get the URI of the output artifact representing the training examples, which is a directory
train_uri = os.path.join(example_gen.outputs['examples'].get()[0].uri, 'Split-train')

# Get the list of files in this directory (all compressed TFRecord files)
tfrecord_filenames = [os.path.join(train_uri, name)
                      for name in os.listdir(train_uri)]

# Create a `TFRecordDataset` to read these files
dataset = tf.data.TFRecordDataset(tfrecord_filenames, compression_type="GZIP")

# Iterate over the first 3 records and decode them.
for tfrecord in dataset.take(3):
  serialized_example = tfrecord.numpy()
  example = tf.train.Example()
  example.ParseFromString(serialized_example)
  pp.pprint(example)
features {
  feature {
    key: "company"
    value {
      bytes_list {
        value: "Chicago Elite Cab Corp. (Chicago Carriag"
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 12.449999809265137
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Credit Card"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 6
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 19
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 5
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1400269500
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      bytes_list {
        value: "Taxi Affiliation Services"
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 27.049999237060547
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Cash"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 60
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
        value: 41.836151123046875
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
        value: -87.64878845214844
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 12.600000381469727
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 1380
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 2
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 10
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1380593700
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      bytes_list {
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 16.450000762939453
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Cash"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 13
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
        value: 41.98363494873047
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
        value: -87.72357940673828
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 6.900000095367432
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 780
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 12
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 11
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1446554700
      }
    }
  }
}

עכשיו ExampleGen סיימה בליעת הנתונים, השלב הבא הוא ניתוח נתונים.

סטטיסטיקה

StatisticsGen הסטטיסטיקה מחשב מרכיב מעל הנתונים שלך לניתוח נתונים, כמו גם לשימוש ברכיבים במורד הזרם. היא משתמשת אימות נתוני TensorFlow הספרייה.

StatisticsGen לוקח כקלט מערך הנתונים שאותו אנו פשוט לבלוע באמצעות ExampleGen .

statistics_gen = tfx.components.StatisticsGen(
    examples=example_gen.outputs['examples'])
context.run(statistics_gen)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for StatisticsGen
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for StatisticsGen
INFO:absl:Generating statistics for split train.
INFO:absl:Statistics for split train written to /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/StatisticsGen/statistics/2/Split-train.
INFO:absl:Generating statistics for split eval.
INFO:absl:Statistics for split eval written to /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/StatisticsGen/statistics/2/Split-eval.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
INFO:absl:Running publisher for StatisticsGen
INFO:absl:MetadataStore with DB connection initialized

לאחר StatisticsGen מסיים את פעולתו, אנחנו יכולים לדמיין את הסטטיסטיקה תשודר. נסה לשחק עם העלילות השונות!

context.show(statistics_gen.outputs['statistics'])

SchemaGen

SchemaGen רכיב מייצר סכימה המבוססת על סטטיסטיקה הנתונים שלך. (סכמה מגדירה את גבולות צפוי, סוגים, ומאפיינים של תכונות במערך הנתונים.) כמו כן משתמשת אימות נתונים TensorFlow הספרייה.

SchemaGen ייקח כקלט הסטטיסטיקה שאנחנו שנוצרנו עם StatisticsGen , להסתכל על פיצול אימונים כברירת מחדל.

schema_gen = tfx.components.SchemaGen(
    statistics=statistics_gen.outputs['statistics'],
    infer_feature_shape=False)
context.run(schema_gen)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for SchemaGen
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for SchemaGen
INFO:absl:Processing schema from statistics for split train.
INFO:absl:Processing schema from statistics for split eval.
INFO:absl:Schema written to /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/SchemaGen/schema/3/schema.pbtxt.
INFO:absl:Running publisher for SchemaGen
INFO:absl:MetadataStore with DB connection initialized

לאחר SchemaGen מסיים את פעולתו, אנחנו יכולים לדמיין את הסכמה שנוצרה כטבלה.

context.show(schema_gen.outputs['schema'])

כל תכונה במערך הנתונים שלך מופיעה כשורה בטבלת הסכימה, לצד המאפיינים שלה. הסכימה גם לוכדת את כל הערכים שתכונה קטגורית לוקחת על עצמה, מסומנים כתחום שלה.

כדי ללמוד עוד על סכימות, לראות בתיעוד SchemaGen .

אימות לדוגמה

ExampleValidator רכיב מזהה חריגות בנתונים שלך, המבוסס על ציפיות המוגדרים בסכימת. כמו כן משתמשת אימות נתונים TensorFlow הספרייה.

ExampleValidator ייקח כקלט הסטטיסטיקה מן StatisticsGen , ואת הסכימה מן SchemaGen .

example_validator = tfx.components.ExampleValidator(
    statistics=statistics_gen.outputs['statistics'],
    schema=schema_gen.outputs['schema'])
context.run(example_validator)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for ExampleValidator
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for ExampleValidator
INFO:absl:Validating schema against the computed statistics for split train.
INFO:absl:Validation complete for split train. Anomalies written to /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/ExampleValidator/anomalies/4/Split-train.
INFO:absl:Validating schema against the computed statistics for split eval.
INFO:absl:Validation complete for split eval. Anomalies written to /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/ExampleValidator/anomalies/4/Split-eval.
INFO:absl:Running publisher for ExampleValidator
INFO:absl:MetadataStore with DB connection initialized

לאחר ExampleValidator מסיים את פעולתו, אנחנו יכולים לדמיין את אנומליות כטבלה.

context.show(example_validator.outputs['anomalies'])

בטבלת החריגות, אנו יכולים לראות שאין חריגות. זה מה שהיינו מצפים, שכן זהו מערך הנתונים הראשון שניתחנו והסכימה מותאמת אליו. עליך לעיין בסכימה זו -- כל דבר בלתי צפוי פירושו חריגה בנתונים. לאחר סקירה, הסכימה יכולה לשמש לשמירה על נתונים עתידיים, וניתן להשתמש בחריגות שנוצרו כאן כדי לנפות באגים בביצועי המודל, להבין כיצד הנתונים שלך מתפתחים לאורך זמן ולזהות שגיאות נתונים.

שינוי צורה

Transform הנדסת תכונה מבצע רכיב עבור שני אימונים והגשה. היא משתמשת TensorFlow Transform הספרייה.

Transform ייקח כקלט את הנתונים ExampleGen , של הסכמה SchemaGen , כמו גם מודול המכיל המוגדרים על ידי המשתמש Transform קוד.

בואו לראות דוגמה המוגדרים על ידי המשתמש Transform הקוד שלהלן (עבור מבוא TensorFlow Transform APIs, ראה הדרכה ). ראשית, אנו מגדירים כמה קבועים עבור הנדסת תכונות:

_taxi_constants_module_file = 'taxi_constants.py'
%%writefile {_taxi_constants_module_file}

# Categorical features are assumed to each have a maximum value in the dataset.
MAX_CATEGORICAL_FEATURE_VALUES = [24, 31, 12]

CATEGORICAL_FEATURE_KEYS = [
    'trip_start_hour', 'trip_start_day', 'trip_start_month',
    'pickup_census_tract', 'dropoff_census_tract', 'pickup_community_area',
    'dropoff_community_area'
]

DENSE_FLOAT_FEATURE_KEYS = ['trip_miles', 'fare', 'trip_seconds']

# Number of buckets used by tf.transform for encoding each feature.
FEATURE_BUCKET_COUNT = 10

BUCKET_FEATURE_KEYS = [
    'pickup_latitude', 'pickup_longitude', 'dropoff_latitude',
    'dropoff_longitude'
]

# Number of vocabulary terms used for encoding VOCAB_FEATURES by tf.transform
VOCAB_SIZE = 1000

# Count of out-of-vocab buckets in which unrecognized VOCAB_FEATURES are hashed.
OOV_SIZE = 10

VOCAB_FEATURE_KEYS = [
    'payment_type',
    'company',
]

# Keys
LABEL_KEY = 'tips'
FARE_KEY = 'fare'
Writing taxi_constants.py

הבא, אנחנו כותבים preprocessing_fn שלוקח בנתונים גולמיים כקלט, וחוזר תכונות טרנספורמציה כי המודל שלנו יכול לאמן על:

_taxi_transform_module_file = 'taxi_transform.py'
%%writefile {_taxi_transform_module_file}

import tensorflow as tf
import tensorflow_transform as tft

import taxi_constants

_DENSE_FLOAT_FEATURE_KEYS = taxi_constants.DENSE_FLOAT_FEATURE_KEYS
_VOCAB_FEATURE_KEYS = taxi_constants.VOCAB_FEATURE_KEYS
_VOCAB_SIZE = taxi_constants.VOCAB_SIZE
_OOV_SIZE = taxi_constants.OOV_SIZE
_FEATURE_BUCKET_COUNT = taxi_constants.FEATURE_BUCKET_COUNT
_BUCKET_FEATURE_KEYS = taxi_constants.BUCKET_FEATURE_KEYS
_CATEGORICAL_FEATURE_KEYS = taxi_constants.CATEGORICAL_FEATURE_KEYS
_FARE_KEY = taxi_constants.FARE_KEY
_LABEL_KEY = taxi_constants.LABEL_KEY


def preprocessing_fn(inputs):
  """tf.transform's callback function for preprocessing inputs.
  Args:
    inputs: map from feature keys to raw not-yet-transformed features.
  Returns:
    Map from string feature key to transformed feature operations.
  """
  outputs = {}
  for key in _DENSE_FLOAT_FEATURE_KEYS:
    # If sparse make it dense, setting nan's to 0 or '', and apply zscore.
    outputs[key] = tft.scale_to_z_score(
        _fill_in_missing(inputs[key]))

  for key in _VOCAB_FEATURE_KEYS:
    # Build a vocabulary for this feature.
    outputs[key] = tft.compute_and_apply_vocabulary(
        _fill_in_missing(inputs[key]),
        top_k=_VOCAB_SIZE,
        num_oov_buckets=_OOV_SIZE)

  for key in _BUCKET_FEATURE_KEYS:
    outputs[key] = tft.bucketize(
        _fill_in_missing(inputs[key]), _FEATURE_BUCKET_COUNT)

  for key in _CATEGORICAL_FEATURE_KEYS:
    outputs[key] = _fill_in_missing(inputs[key])

  # Was this passenger a big tipper?
  taxi_fare = _fill_in_missing(inputs[_FARE_KEY])
  tips = _fill_in_missing(inputs[_LABEL_KEY])
  outputs[_LABEL_KEY] = tf.where(
      tf.math.is_nan(taxi_fare),
      tf.cast(tf.zeros_like(taxi_fare), tf.int64),
      # Test if the tip was > 20% of the fare.
      tf.cast(
          tf.greater(tips, tf.multiply(taxi_fare, tf.constant(0.2))), tf.int64))

  return outputs


def _fill_in_missing(x):
  """Replace missing values in a SparseTensor.
  Fills in missing values of `x` with '' or 0, and converts to a dense tensor.
  Args:
    x: A `SparseTensor` of rank 2.  Its dense shape should have size at most 1
      in the second dimension.
  Returns:
    A rank 1 tensor where missing values of `x` have been filled in.
  """
  if not isinstance(x, tf.sparse.SparseTensor):
    return x

  default_value = '' if x.dtype == tf.string else 0
  return tf.squeeze(
      tf.sparse.to_dense(
          tf.SparseTensor(x.indices, x.values, [x.dense_shape[0], 1]),
          default_value),
      axis=1)
Writing taxi_transform.py

עכשיו, אנחנו עוברים קוד הנדסה תכונה זו אל Transform רכיב ולהפעיל אותו כדי להעביר את הנתונים.

transform = tfx.components.Transform(
    examples=example_gen.outputs['examples'],
    schema=schema_gen.outputs['schema'],
    module_file=os.path.abspath(_taxi_transform_module_file))
context.run(transform)
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/taxi_transform.py' (including modules: ['taxi_transform', 'taxi_constants']).
INFO:absl:User module package has hash fingerprint version f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmp9qnpryw9/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmppaskl3va', '--dist-dir', '/tmp/tmpr6oorqji']
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
  setuptools.SetuptoolsDeprecationWarning,
INFO:absl:Successfully built user code wheel distribution at '/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'; target user module is 'taxi_transform'.
INFO:absl:Full user module path is 'taxi_transform@/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'
INFO:absl:Running driver for Transform
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for Transform
INFO:absl:Analyze the 'train' split and transform all splits when splits_config is not set.
INFO:absl:udf_utils.get_fn {'module_file': None, 'module_path': 'taxi_transform@/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl', 'preprocessing_fn': None} 'preprocessing_fn'
INFO:absl:Installing '/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpbvbj9r5b', '/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl']
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying taxi_transform.py -> build/lib
copying taxi_constants.py -> build/lib
running install
running install_lib
running install_egg_info
running egg_info
creating tfx_user_code_Transform.egg-info
writing manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
Copying tfx_user_code_Transform.egg-info to /tmp/tmppaskl3va/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3.7.egg-info
running install_scripts
Processing /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'.
INFO:absl:udf_utils.get_fn {'module_file': None, 'module_path': 'taxi_transform@/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl', 'stats_options_updater_fn': None} 'stats_options_updater_fn'
INFO:absl:Installing '/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpbzwdie1a', '/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl']
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424
Processing /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'.
INFO:absl:Installing '/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmp09euava5', '/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl']
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424
Processing /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:289: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use ref() instead.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType], int] instead.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: compute_and_apply_vocabulary/apply_vocab/text_file_init/InitializeTableFromTextFileV2
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: compute_and_apply_vocabulary_1/apply_vocab/text_file_init/InitializeTableFromTextFileV2
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: compute_and_apply_vocabulary/apply_vocab/text_file_init/InitializeTableFromTextFileV2
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: compute_and_apply_vocabulary_1/apply_vocab/text_file_init/InitializeTableFromTextFileV2
WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType], int] instead.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
2021-12-21 10:10:18.679569: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Transform/transform_graph/5/.temp_path/tftransform_tmp/80dbc09e6ded4a93b5c506e252c8f536/assets
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Transform/transform_graph/5/.temp_path/tftransform_tmp/572eacb7c64f4f6e9262f7d496a95f86/assets
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:absl:If the number of unique tokens is smaller than the provided top_k or approximation error is acceptable, consider using tft.experimental.approximate_vocabulary for a potentially more efficient implementation.
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:absl:Running publisher for Transform
INFO:absl:MetadataStore with DB connection initialized

בואו לבחון את ממצאי הפלט של Transform . רכיב זה מייצר שני סוגים של תפוקות:

  • transform_graph הוא הגרף שיכול לבצע את פעולות עיבוד המקדימות (הגרף הזה ייכלל דגמי המנה והערכה).
  • transformed_examples מייצג את הנתונים הכשרה והערכה מעובד.
transform.outputs
{'transform_graph': Channel(
     type_name: TransformGraph
     artifacts: [Artifact(artifact: id: 5
 type_id: 22
 uri: "/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Transform/transform_graph/5"
 custom_properties {
   key: "name"
   value {
     string_value: "transform_graph"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.5.0"
   }
 }
 state: LIVE
 , artifact_type: id: 22
 name: "TransformGraph"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'transformed_examples': Channel(
     type_name: Examples
     artifacts: [Artifact(artifact: id: 6
 type_id: 14
 uri: "/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Transform/transformed_examples/5"
 properties {
   key: "split_names"
   value {
     string_value: "[\"train\", \"eval\"]"
   }
 }
 custom_properties {
   key: "name"
   value {
     string_value: "transformed_examples"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.5.0"
   }
 }
 state: LIVE
 , artifact_type: id: 14
 name: "Examples"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 properties {
   key: "version"
   value: INT
 }
 base_type: DATASET
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'updated_analyzer_cache': Channel(
     type_name: TransformCache
     artifacts: [Artifact(artifact: id: 7
 type_id: 23
 uri: "/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Transform/updated_analyzer_cache/5"
 custom_properties {
   key: "name"
   value {
     string_value: "updated_analyzer_cache"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.5.0"
   }
 }
 state: LIVE
 , artifact_type: id: 23
 name: "TransformCache"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'pre_transform_schema': Channel(
     type_name: Schema
     artifacts: [Artifact(artifact: id: 8
 type_id: 18
 uri: "/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Transform/pre_transform_schema/5"
 custom_properties {
   key: "name"
   value {
     string_value: "pre_transform_schema"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.5.0"
   }
 }
 state: LIVE
 , artifact_type: id: 18
 name: "Schema"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'pre_transform_stats': Channel(
     type_name: ExampleStatistics
     artifacts: [Artifact(artifact: id: 9
 type_id: 16
 uri: "/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Transform/pre_transform_stats/5"
 custom_properties {
   key: "name"
   value {
     string_value: "pre_transform_stats"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.5.0"
   }
 }
 state: LIVE
 , artifact_type: id: 16
 name: "ExampleStatistics"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 base_type: STATISTICS
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_schema': Channel(
     type_name: Schema
     artifacts: [Artifact(artifact: id: 10
 type_id: 18
 uri: "/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Transform/post_transform_schema/5"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_schema"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.5.0"
   }
 }
 state: LIVE
 , artifact_type: id: 18
 name: "Schema"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_stats': Channel(
     type_name: ExampleStatistics
     artifacts: [Artifact(artifact: id: 11
 type_id: 16
 uri: "/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Transform/post_transform_stats/5"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_stats"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.5.0"
   }
 }
 state: LIVE
 , artifact_type: id: 16
 name: "ExampleStatistics"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 base_type: STATISTICS
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_anomalies': Channel(
     type_name: ExampleAnomalies
     artifacts: [Artifact(artifact: id: 12
 type_id: 20
 uri: "/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Transform/post_transform_anomalies/5"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_anomalies"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.5.0"
   }
 }
 state: LIVE
 , artifact_type: id: 20
 name: "ExampleAnomalies"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 )}

קחו הצצה אל transform_graph חפץ. זה מצביע על ספרייה המכילה שלוש ספריות משנה.

train_uri = transform.outputs['transform_graph'].get()[0].uri
os.listdir(train_uri)
['transform_fn', 'transformed_metadata', 'metadata']

transformed_metadata בתיקייה מכילה סכימת נתון המעובדים. transform_fn בתיקייה מכילה הגרף המקדים בפועל. metadata בתיקייה מכילה בסכימה של נתון המקוריים.

אנו יכולים גם להסתכל על שלוש הדוגמאות הראשונות שעברו טרנספורמציה:

# Get the URI of the output artifact representing the transformed examples, which is a directory
train_uri = os.path.join(transform.outputs['transformed_examples'].get()[0].uri, 'Split-train')

# Get the list of files in this directory (all compressed TFRecord files)
tfrecord_filenames = [os.path.join(train_uri, name)
                      for name in os.listdir(train_uri)]

# Create a `TFRecordDataset` to read these files
dataset = tf.data.TFRecordDataset(tfrecord_filenames, compression_type="GZIP")

# Iterate over the first 3 records and decode them.
for tfrecord in dataset.take(3):
  serialized_example = tfrecord.numpy()
  example = tf.train.Example()
  example.ParseFromString(serialized_example)
  pp.pprint(example)
features {
  feature {
    key: "company"
    value {
      int64_list {
        value: 8
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 0.061060599982738495
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      int64_list {
        value: 1
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "tips"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: -0.15886741876602173
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      float_list {
        value: -0.7118487358093262
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 6
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 19
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 5
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 1.2521240711212158
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 60
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "tips"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 0.532160758972168
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      float_list {
        value: 0.5509493350982666
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 2
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 10
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      int64_list {
        value: 48
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 0.3873794376850128
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 13
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "tips"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 0.21955277025699615
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      float_list {
        value: 0.0019067146349698305
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 12
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 11
      }
    }
  }
}

לאחר Transform הרכיב שינה את נתון שלך לתוך תכונות, ואת השלב הבא הוא לאמן מודל.

מְאַמֵן

Trainer המרכיב יכשיר מודל שאתה מגדיר ב TensorFlow. מחדל API הערכת תמיכה מאמן, להשתמש ב- API Keras, אתה צריך לציין מאמן גנרי על ידי הגדרת custom_executor_spec=executor_spec.ExecutorClassSpec(GenericExecutor) ב contructor של מאמן.

Trainer לוקח כקלט של הסכמה SchemaGen , הנתונים טרנספורמציה הגרף מ Transform , אימון פרמטרים, כמו גם מודול המכיל קוד דגם המוגדרים על ידי המשתמש.

בואו לראות דוגמה של קוד דגם המוגדרים על ידי משתמש לחסימה להלן (מבוא APIs TensorFlow Keras, לראות את ההדרכה ):

_taxi_trainer_module_file = 'taxi_trainer.py'
%%writefile {_taxi_trainer_module_file}

from typing import List, Text

import os
from absl import logging

import datetime
import tensorflow as tf
import tensorflow_transform as tft

from tfx import v1 as tfx
from tfx_bsl.public import tfxio

import taxi_constants

_DENSE_FLOAT_FEATURE_KEYS = taxi_constants.DENSE_FLOAT_FEATURE_KEYS
_VOCAB_FEATURE_KEYS = taxi_constants.VOCAB_FEATURE_KEYS
_VOCAB_SIZE = taxi_constants.VOCAB_SIZE
_OOV_SIZE = taxi_constants.OOV_SIZE
_FEATURE_BUCKET_COUNT = taxi_constants.FEATURE_BUCKET_COUNT
_BUCKET_FEATURE_KEYS = taxi_constants.BUCKET_FEATURE_KEYS
_CATEGORICAL_FEATURE_KEYS = taxi_constants.CATEGORICAL_FEATURE_KEYS
_MAX_CATEGORICAL_FEATURE_VALUES = taxi_constants.MAX_CATEGORICAL_FEATURE_VALUES
_LABEL_KEY = taxi_constants.LABEL_KEY


def _get_tf_examples_serving_signature(model, tf_transform_output):
  """Returns a serving signature that accepts `tensorflow.Example`."""

  # We need to track the layers in the model in order to save it.
  # TODO(b/162357359): Revise once the bug is resolved.
  model.tft_layer_inference = tf_transform_output.transform_features_layer()

  @tf.function(input_signature=[
      tf.TensorSpec(shape=[None], dtype=tf.string, name='examples')
  ])
  def serve_tf_examples_fn(serialized_tf_example):
    """Returns the output to be used in the serving signature."""
    raw_feature_spec = tf_transform_output.raw_feature_spec()
    # Remove label feature since these will not be present at serving time.
    raw_feature_spec.pop(_LABEL_KEY)
    raw_features = tf.io.parse_example(serialized_tf_example, raw_feature_spec)
    transformed_features = model.tft_layer_inference(raw_features)
    logging.info('serve_transformed_features = %s', transformed_features)

    outputs = model(transformed_features)
    # TODO(b/154085620): Convert the predicted labels from the model using a
    # reverse-lookup (opposite of transform.py).
    return {'outputs': outputs}

  return serve_tf_examples_fn


def _get_transform_features_signature(model, tf_transform_output):
  """Returns a serving signature that applies tf.Transform to features."""

  # We need to track the layers in the model in order to save it.
  # TODO(b/162357359): Revise once the bug is resolved.
  model.tft_layer_eval = tf_transform_output.transform_features_layer()

  @tf.function(input_signature=[
      tf.TensorSpec(shape=[None], dtype=tf.string, name='examples')
  ])
  def transform_features_fn(serialized_tf_example):
    """Returns the transformed_features to be fed as input to evaluator."""
    raw_feature_spec = tf_transform_output.raw_feature_spec()
    raw_features = tf.io.parse_example(serialized_tf_example, raw_feature_spec)
    transformed_features = model.tft_layer_eval(raw_features)
    logging.info('eval_transformed_features = %s', transformed_features)
    return transformed_features

  return transform_features_fn


def _input_fn(file_pattern: List[Text],
              data_accessor: tfx.components.DataAccessor,
              tf_transform_output: tft.TFTransformOutput,
              batch_size: int = 200) -> tf.data.Dataset:
  """Generates features and label for tuning/training.

  Args:
    file_pattern: List of paths or patterns of input tfrecord files.
    data_accessor: DataAccessor for converting input to RecordBatch.
    tf_transform_output: A TFTransformOutput.
    batch_size: representing the number of consecutive elements of returned
      dataset to combine in a single batch

  Returns:
    A dataset that contains (features, indices) tuple where features is a
      dictionary of Tensors, and indices is a single Tensor of label indices.
  """
  return data_accessor.tf_dataset_factory(
      file_pattern,
      tfxio.TensorFlowDatasetOptions(
          batch_size=batch_size, label_key=_LABEL_KEY),
      tf_transform_output.transformed_metadata.schema)


def _build_keras_model(hidden_units: List[int] = None) -> tf.keras.Model:
  """Creates a DNN Keras model for classifying taxi data.

  Args:
    hidden_units: [int], the layer sizes of the DNN (input layer first).

  Returns:
    A keras Model.
  """
  real_valued_columns = [
      tf.feature_column.numeric_column(key, shape=())
      for key in _DENSE_FLOAT_FEATURE_KEYS
  ]
  categorical_columns = [
      tf.feature_column.categorical_column_with_identity(
          key, num_buckets=_VOCAB_SIZE + _OOV_SIZE, default_value=0)
      for key in _VOCAB_FEATURE_KEYS
  ]
  categorical_columns += [
      tf.feature_column.categorical_column_with_identity(
          key, num_buckets=_FEATURE_BUCKET_COUNT, default_value=0)
      for key in _BUCKET_FEATURE_KEYS
  ]
  categorical_columns += [
      tf.feature_column.categorical_column_with_identity(  # pylint: disable=g-complex-comprehension
          key,
          num_buckets=num_buckets,
          default_value=0) for key, num_buckets in zip(
              _CATEGORICAL_FEATURE_KEYS,
              _MAX_CATEGORICAL_FEATURE_VALUES)
  ]
  indicator_column = [
      tf.feature_column.indicator_column(categorical_column)
      for categorical_column in categorical_columns
  ]

  model = _wide_and_deep_classifier(
      # TODO(b/139668410) replace with premade wide_and_deep keras model
      wide_columns=indicator_column,
      deep_columns=real_valued_columns,
      dnn_hidden_units=hidden_units or [100, 70, 50, 25])
  return model


def _wide_and_deep_classifier(wide_columns, deep_columns, dnn_hidden_units):
  """Build a simple keras wide and deep model.

  Args:
    wide_columns: Feature columns wrapped in indicator_column for wide (linear)
      part of the model.
    deep_columns: Feature columns for deep part of the model.
    dnn_hidden_units: [int], the layer sizes of the hidden DNN.

  Returns:
    A Wide and Deep Keras model
  """
  # Following values are hard coded for simplicity in this example,
  # However prefarably they should be passsed in as hparams.

  # Keras needs the feature definitions at compile time.
  # TODO(b/139081439): Automate generation of input layers from FeatureColumn.
  input_layers = {
      colname: tf.keras.layers.Input(name=colname, shape=(), dtype=tf.float32)
      for colname in _DENSE_FLOAT_FEATURE_KEYS
  }
  input_layers.update({
      colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32')
      for colname in _VOCAB_FEATURE_KEYS
  })
  input_layers.update({
      colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32')
      for colname in _BUCKET_FEATURE_KEYS
  })
  input_layers.update({
      colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32')
      for colname in _CATEGORICAL_FEATURE_KEYS
  })

  # TODO(b/161952382): Replace with Keras preprocessing layers.
  deep = tf.keras.layers.DenseFeatures(deep_columns)(input_layers)
  for numnodes in dnn_hidden_units:
    deep = tf.keras.layers.Dense(numnodes)(deep)
  wide = tf.keras.layers.DenseFeatures(wide_columns)(input_layers)

  output = tf.keras.layers.Dense(1)(
          tf.keras.layers.concatenate([deep, wide]))

  model = tf.keras.Model(input_layers, output)
  model.compile(
      loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
      optimizer=tf.keras.optimizers.Adam(lr=0.001),
      metrics=[tf.keras.metrics.BinaryAccuracy()])
  model.summary(print_fn=logging.info)
  return model


# TFX Trainer will call this function.
def run_fn(fn_args: tfx.components.FnArgs):
  """Train the model based on given args.

  Args:
    fn_args: Holds args used to train the model as name/value pairs.
  """
  # Number of nodes in the first layer of the DNN
  first_dnn_layer_size = 100
  num_dnn_layers = 4
  dnn_decay_factor = 0.7

  tf_transform_output = tft.TFTransformOutput(fn_args.transform_output)

  train_dataset = _input_fn(fn_args.train_files, fn_args.data_accessor, 
                            tf_transform_output, 40)
  eval_dataset = _input_fn(fn_args.eval_files, fn_args.data_accessor, 
                           tf_transform_output, 40)

  model = _build_keras_model(
      # Construct layers sizes with exponetial decay
      hidden_units=[
          max(2, int(first_dnn_layer_size * dnn_decay_factor**i))
          for i in range(num_dnn_layers)
      ])

  tensorboard_callback = tf.keras.callbacks.TensorBoard(
      log_dir=fn_args.model_run_dir, update_freq='batch')
  model.fit(
      train_dataset,
      steps_per_epoch=fn_args.train_steps,
      validation_data=eval_dataset,
      validation_steps=fn_args.eval_steps,
      callbacks=[tensorboard_callback])

  signatures = {
      'serving_default':
          _get_tf_examples_serving_signature(model, tf_transform_output),
      'transform_features':
          _get_transform_features_signature(model, tf_transform_output),
  }
  model.save(fn_args.serving_model_dir, save_format='tf', signatures=signatures)
Writing taxi_trainer.py

עכשיו, אנחנו עוברים קוד הדגם הזה Trainer המרכיב ולהפעיל אותו לאמן את המודל.

trainer = tfx.components.Trainer(
    module_file=os.path.abspath(_taxi_trainer_module_file),
    examples=transform.outputs['transformed_examples'],
    transform_graph=transform.outputs['transform_graph'],
    schema=schema_gen.outputs['schema'],
    train_args=tfx.proto.TrainArgs(num_steps=10000),
    eval_args=tfx.proto.EvalArgs(num_steps=5000))
context.run(trainer)
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/taxi_trainer.py' (including modules: ['taxi_transform', 'taxi_constants', 'taxi_trainer']).
INFO:absl:User module package has hash fingerprint version ace8eb563ff2ae66112acc05232b33344bcb925cdc0a0847df64c544323b99af.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmpzxd5b1yc/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmpbg9ly6tr', '--dist-dir', '/tmp/tmpx43qh690']
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
  setuptools.SetuptoolsDeprecationWarning,
INFO:absl:Successfully built user code wheel distribution at '/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Trainer-0.0+ace8eb563ff2ae66112acc05232b33344bcb925cdc0a0847df64c544323b99af-py3-none-any.whl'; target user module is 'taxi_trainer'.
INFO:absl:Full user module path is 'taxi_trainer@/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Trainer-0.0+ace8eb563ff2ae66112acc05232b33344bcb925cdc0a0847df64c544323b99af-py3-none-any.whl'
INFO:absl:Running driver for Trainer
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for Trainer
INFO:absl:Train on the 'train' split when train_args.splits is not set.
INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set.
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
INFO:absl:udf_utils.get_fn {'train_args': '{\n  "num_steps": 10000\n}', 'eval_args': '{\n  "num_steps": 5000\n}', 'module_file': None, 'run_fn': None, 'trainer_fn': None, 'custom_config': 'null', 'module_path': 'taxi_trainer@/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Trainer-0.0+ace8eb563ff2ae66112acc05232b33344bcb925cdc0a0847df64c544323b99af-py3-none-any.whl'} 'run_fn'
INFO:absl:Installing '/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Trainer-0.0+ace8eb563ff2ae66112acc05232b33344bcb925cdc0a0847df64c544323b99af-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmp1osq6e1x', '/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Trainer-0.0+ace8eb563ff2ae66112acc05232b33344bcb925cdc0a0847df64c544323b99af-py3-none-any.whl']
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying taxi_transform.py -> build/lib
copying taxi_constants.py -> build/lib
copying taxi_trainer.py -> build/lib
running install
running install_lib
running install_egg_info
running egg_info
creating tfx_user_code_Trainer.egg-info
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
Copying tfx_user_code_Trainer.egg-info to /tmp/tmpbg9ly6tr/tfx_user_code_Trainer-0.0+ace8eb563ff2ae66112acc05232b33344bcb925cdc0a0847df64c544323b99af-py3.7.egg-info
running install_scripts
Processing /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Trainer-0.0+ace8eb563ff2ae66112acc05232b33344bcb925cdc0a0847df64c544323b99af-py3-none-any.whl
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/_wheels/tfx_user_code_Trainer-0.0+ace8eb563ff2ae66112acc05232b33344bcb925cdc0a0847df64c544323b99af-py3-none-any.whl'.
INFO:absl:Training model.
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
Installing collected packages: tfx-user-code-Trainer
Successfully installed tfx-user-code-Trainer-0.0+ace8eb563ff2ae66112acc05232b33344bcb925cdc0a0847df64c544323b99af
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/adam.py:105: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.
  super(Adam, self).__init__(name, **kwargs)
INFO:absl:Model: "model"
INFO:absl:__________________________________________________________________________________________________
INFO:absl: Layer (type)                   Output Shape         Param #     Connected to                     
INFO:absl:==================================================================================================
INFO:absl: company (InputLayer)           [(None,)]            0           []                               
INFO:absl:                                                                                                  
INFO:absl: dropoff_census_tract (InputLay  [(None,)]           0           []                               
INFO:absl: er)                                                                                              
INFO:absl:                                                                                                  
INFO:absl: dropoff_community_area (InputL  [(None,)]           0           []                               
INFO:absl: ayer)                                                                                            
INFO:absl:                                                                                                  
INFO:absl: dropoff_latitude (InputLayer)  [(None,)]            0           []                               
INFO:absl:                                                                                                  
INFO:absl: dropoff_longitude (InputLayer)  [(None,)]           0           []                               
INFO:absl:                                                                                                  
INFO:absl: fare (InputLayer)              [(None,)]            0           []                               
INFO:absl:                                                                                                  
INFO:absl: payment_type (InputLayer)      [(None,)]            0           []                               
INFO:absl:                                                                                                  
INFO:absl: pickup_census_tract (InputLaye  [(None,)]           0           []                               
INFO:absl: r)                                                                                               
INFO:absl:                                                                                                  
INFO:absl: pickup_community_area (InputLa  [(None,)]           0           []                               
INFO:absl: yer)                                                                                             
INFO:absl:                                                                                                  
INFO:absl: pickup_latitude (InputLayer)   [(None,)]            0           []                               
INFO:absl:                                                                                                  
INFO:absl: pickup_longitude (InputLayer)  [(None,)]            0           []                               
INFO:absl:                                                                                                  
INFO:absl: trip_miles (InputLayer)        [(None,)]            0           []                               
INFO:absl:                                                                                                  
INFO:absl: trip_seconds (InputLayer)      [(None,)]            0           []                               
INFO:absl:                                                                                                  
INFO:absl: trip_start_day (InputLayer)    [(None,)]            0           []                               
INFO:absl:                                                                                                  
INFO:absl: trip_start_hour (InputLayer)   [(None,)]            0           []                               
INFO:absl:                                                                                                  
INFO:absl: trip_start_month (InputLayer)  [(None,)]            0           []                               
INFO:absl:                                                                                                  
INFO:absl: dense_features (DenseFeatures)  (None, 3)           0           ['company[0][0]',                
INFO:absl:                                                                  'dropoff_census_tract[0][0]',   
INFO:absl:                                                                  'dropoff_community_area[0][0]', 
INFO:absl:                                                                  'dropoff_latitude[0][0]',       
INFO:absl:                                                                  'dropoff_longitude[0][0]',      
INFO:absl:                                                                  'fare[0][0]',                   
INFO:absl:                                                                  'payment_type[0][0]',           
INFO:absl:                                                                  'pickup_census_tract[0][0]',    
INFO:absl:                                                                  'pickup_community_area[0][0]',  
INFO:absl:                                                                  'pickup_latitude[0][0]',        
INFO:absl:                                                                  'pickup_longitude[0][0]',       
INFO:absl:                                                                  'trip_miles[0][0]',             
INFO:absl:                                                                  'trip_seconds[0][0]',           
INFO:absl:                                                                  'trip_start_day[0][0]',         
INFO:absl:                                                                  'trip_start_hour[0][0]',        
INFO:absl:                                                                  'trip_start_month[0][0]']       
INFO:absl:                                                                                                  
INFO:absl: dense (Dense)                  (None, 100)          400         ['dense_features[0][0]']         
INFO:absl:                                                                                                  
INFO:absl: dense_1 (Dense)                (None, 70)           7070        ['dense[0][0]']                  
INFO:absl:                                                                                                  
INFO:absl: dense_2 (Dense)                (None, 48)           3408        ['dense_1[0][0]']                
INFO:absl:                                                                                                  
INFO:absl: dense_3 (Dense)                (None, 34)           1666        ['dense_2[0][0]']                
INFO:absl:                                                                                                  
INFO:absl: dense_features_1 (DenseFeature  (None, 2127)        0           ['company[0][0]',                
INFO:absl: s)                                                               'dropoff_census_tract[0][0]',   
INFO:absl:                                                                  'dropoff_community_area[0][0]', 
INFO:absl:                                                                  'dropoff_latitude[0][0]',       
INFO:absl:                                                                  'dropoff_longitude[0][0]',      
INFO:absl:                                                                  'fare[0][0]',                   
INFO:absl:                                                                  'payment_type[0][0]',           
INFO:absl:                                                                  'pickup_census_tract[0][0]',    
INFO:absl:                                                                  'pickup_community_area[0][0]',  
INFO:absl:                                                                  'pickup_latitude[0][0]',        
INFO:absl:                                                                  'pickup_longitude[0][0]',       
INFO:absl:                                                                  'trip_miles[0][0]',             
INFO:absl:                                                                  'trip_seconds[0][0]',           
INFO:absl:                                                                  'trip_start_day[0][0]',         
INFO:absl:                                                                  'trip_start_hour[0][0]',        
INFO:absl:                                                                  'trip_start_month[0][0]']       
INFO:absl:                                                                                                  
INFO:absl: concatenate (Concatenate)      (None, 2161)         0           ['dense_3[0][0]',                
INFO:absl:                                                                  'dense_features_1[0][0]']       
INFO:absl:                                                                                                  
INFO:absl: dense_4 (Dense)                (None, 1)            2162        ['concatenate[0][0]']            
INFO:absl:                                                                                                  
INFO:absl:==================================================================================================
INFO:absl:Total params: 14,706
INFO:absl:Trainable params: 14,706
INFO:absl:Non-trainable params: 0
INFO:absl:__________________________________________________________________________________________________
10000/10000 [==============================] - 100s 10ms/step - loss: 0.2372 - binary_accuracy: 0.8605 - val_loss: 0.2222 - val_binary_accuracy: 0.8709
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
WARNING:tensorflow:AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f88b5e27910>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING: AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f88b5e27910>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
INFO:absl:serve_transformed_features = {'pickup_latitude': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:9' shape=(None,) dtype=int64>, 'trip_start_hour': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:15' shape=(None,) dtype=int64>, 'fare': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:5' shape=(None,) dtype=float32>, 'trip_miles': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:12' shape=(None,) dtype=float32>, 'trip_start_day': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:14' shape=(None,) dtype=int64>, 'dropoff_latitude': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:3' shape=(None,) dtype=int64>, 'trip_start_month': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:16' shape=(None,) dtype=int64>, 'dropoff_community_area': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:2' shape=(None,) dtype=int64>, 'dropoff_longitude': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:4' shape=(None,) dtype=int64>, 'payment_type': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:6' shape=(None,) dtype=int64>, 'pickup_longitude': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:10' shape=(None,) dtype=int64>, 'pickup_community_area': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:8' shape=(None,) dtype=int64>, 'company': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:0' shape=(None,) dtype=int64>, 'pickup_census_tract': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:7' shape=(None,) dtype=int64>, 'dropoff_census_tract': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:1' shape=(None,) dtype=int64>, 'trip_seconds': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:13' shape=(None,) dtype=float32>}
INFO:absl:eval_transformed_features = {'pickup_latitude': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:9' shape=(None,) dtype=int64>, 'trip_start_hour': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:15' shape=(None,) dtype=int64>, 'fare': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:5' shape=(None,) dtype=float32>, 'trip_miles': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:12' shape=(None,) dtype=float32>, 'trip_start_day': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:14' shape=(None,) dtype=int64>, 'dropoff_latitude': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:3' shape=(None,) dtype=int64>, 'trip_start_month': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:16' shape=(None,) dtype=int64>, 'dropoff_community_area': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:2' shape=(None,) dtype=int64>, 'dropoff_longitude': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:4' shape=(None,) dtype=int64>, 'payment_type': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:6' shape=(None,) dtype=int64>, 'pickup_longitude': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:10' shape=(None,) dtype=int64>, 'pickup_community_area': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:8' shape=(None,) dtype=int64>, 'company': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:0' shape=(None,) dtype=int64>, 'pickup_census_tract': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:7' shape=(None,) dtype=int64>, 'tips': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:11' shape=(None,) dtype=int64>, 'dropoff_census_tract': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:1' shape=(None,) dtype=int64>, 'trip_seconds': <tf.Tensor 'transform_features_layer/StatefulPartitionedCall:13' shape=(None,) dtype=float32>}
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Trainer/model/6/Format-Serving/assets
INFO:absl:Training complete. Model written to /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Trainer/model/6/Format-Serving. ModelRun written to /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Trainer/model_run/6
INFO:absl:Running publisher for Trainer
INFO:absl:MetadataStore with DB connection initialized

ניתוח הדרכה עם TensorBoard

תציץ בחפץ המאמן. זה מצביע על ספרייה המכילה את ספריות המשנה של המודל.

model_artifact_dir = trainer.outputs['model'].get()[0].uri
pp.pprint(os.listdir(model_artifact_dir))
model_dir = os.path.join(model_artifact_dir, 'Format-Serving')
pp.pprint(os.listdir(model_dir))
['Format-Serving']
['variables', 'assets', 'keras_metadata.pb', 'saved_model.pb']

לחלופין, אנו יכולים לחבר את TensorBoard ל-Trainer כדי לנתח את עקומות האימון של המודל שלנו.

model_run_artifact_dir = trainer.outputs['model_run'].get()[0].uri

%load_ext tensorboard
%tensorboard --logdir {model_run_artifact_dir}

מעריך

Evaluator רכיב מחשב מדדי ביצועי מודל על סט ההערכה. היא משתמשת ניתוח דגם TensorFlow הספרייה. Evaluator גם יכול לאמת אופציונאלי כי מודל מודרך חדש הוא טוב יותר מאשר הדגם הקודם. זה שימושי בהגדרת צינור ייצור שבה אתה יכול לאמן ולאמת מודל אוטומטית מדי יום. במחברת זו, אנו רק לאמן את מודל אחד, כך Evaluator אוטומטי יתייג את מודל "טוב".

Evaluator ייקח כקלט את נתון ExampleGen , המודל המאומן מן Trainer , ותצורת חיתוך. תצורת החיתוך מאפשרת לך לחתוך את המדדים שלך על ערכי תכונה (למשל איך המודל שלך מתפקד בנסיעות במונית שמתחילות ב-8 בבוקר לעומת 20:00?). ראה דוגמה של תצורה זו להלן:

eval_config = tfma.EvalConfig(
    model_specs=[
        # This assumes a serving model with signature 'serving_default'. If
        # using estimator based EvalSavedModel, add signature_name: 'eval' and
        # remove the label_key.
        tfma.ModelSpec(
            signature_name='serving_default',
            label_key='tips',
            preprocessing_function_names=['transform_features'],
            )
        ],
    metrics_specs=[
        tfma.MetricsSpec(
            # The metrics added here are in addition to those saved with the
            # model (assuming either a keras model or EvalSavedModel is used).
            # Any metrics added into the saved model (for example using
            # model.compile(..., metrics=[...]), etc) will be computed
            # automatically.
            # To add validation thresholds for metrics saved with the model,
            # add them keyed by metric name to the thresholds map.
            metrics=[
                tfma.MetricConfig(class_name='ExampleCount'),
                tfma.MetricConfig(class_name='BinaryAccuracy',
                  threshold=tfma.MetricThreshold(
                      value_threshold=tfma.GenericValueThreshold(
                          lower_bound={'value': 0.5}),
                      # Change threshold will be ignored if there is no
                      # baseline model resolved from MLMD (first run).
                      change_threshold=tfma.GenericChangeThreshold(
                          direction=tfma.MetricDirection.HIGHER_IS_BETTER,
                          absolute={'value': -1e-10})))
            ]
        )
    ],
    slicing_specs=[
        # An empty slice spec means the overall slice, i.e. the whole dataset.
        tfma.SlicingSpec(),
        # Data can be sliced along a feature column. In this case, data is
        # sliced along feature column trip_start_hour.
        tfma.SlicingSpec(feature_keys=['trip_start_hour'])
    ])

הבא, אנחנו נותנים בתצורה זו כדי Evaluator ולהפעיל אותו.

# Use TFMA to compute a evaluation statistics over features of a model and
# validate them against a baseline.

# The model resolver is only required if performing model validation in addition
# to evaluation. In this case we validate against the latest blessed model. If
# no model has been blessed before (as in this case) the evaluator will make our
# candidate the first blessed model.
model_resolver = tfx.dsl.Resolver(
      strategy_class=tfx.dsl.experimental.LatestBlessedModelStrategy,
      model=tfx.dsl.Channel(type=tfx.types.standard_artifacts.Model),
      model_blessing=tfx.dsl.Channel(
          type=tfx.types.standard_artifacts.ModelBlessing)).with_id(
              'latest_blessed_model_resolver')
context.run(model_resolver)

evaluator = tfx.components.Evaluator(
    examples=example_gen.outputs['examples'],
    model=trainer.outputs['model'],
    baseline_model=model_resolver.outputs['model'],
    eval_config=eval_config)
context.run(evaluator)
INFO:absl:Running driver for latest_blessed_model_resolver
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running publisher for latest_blessed_model_resolver
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running driver for Evaluator
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for Evaluator
INFO:absl:Nonempty beam arg extra_packages already includes dependency
INFO:absl:udf_utils.get_fn {'eval_config': '{\n  "metrics_specs": [\n    {\n      "metrics": [\n        {\n          "class_name": "ExampleCount"\n        },\n        {\n          "class_name": "BinaryAccuracy",\n          "threshold": {\n            "change_threshold": {\n              "absolute": -1e-10,\n              "direction": "HIGHER_IS_BETTER"\n            },\n            "value_threshold": {\n              "lower_bound": 0.5\n            }\n          }\n        }\n      ]\n    }\n  ],\n  "model_specs": [\n    {\n      "label_key": "tips",\n      "preprocessing_function_names": [\n        "transform_features"\n      ],\n      "signature_name": "serving_default"\n    }\n  ],\n  "slicing_specs": [\n    {},\n    {\n      "feature_keys": [\n        "trip_start_hour"\n      ]\n    }\n  ]\n}', 'feature_slicing_spec': None, 'fairness_indicator_thresholds': 'null', 'example_splits': 'null', 'module_file': None, 'module_path': None} 'custom_eval_shared_model'
INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  signature_name: "serving_default"
  label_key: "tips"
  preprocessing_function_names: "transform_features"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  metrics {
    class_name: "BinaryAccuracy"
    threshold {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
}

INFO:absl:Using /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Trainer/model/6/Format-Serving as  model.
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f87bc0f5e50> and <keras.engine.input_layer.InputLayer object at 0x7f87bc0f5b50>).
INFO:absl:The 'example_splits' parameter is not set, using 'eval' split.
INFO:absl:Evaluating model.
INFO:absl:udf_utils.get_fn {'eval_config': '{\n  "metrics_specs": [\n    {\n      "metrics": [\n        {\n          "class_name": "ExampleCount"\n        },\n        {\n          "class_name": "BinaryAccuracy",\n          "threshold": {\n            "change_threshold": {\n              "absolute": -1e-10,\n              "direction": "HIGHER_IS_BETTER"\n            },\n            "value_threshold": {\n              "lower_bound": 0.5\n            }\n          }\n        }\n      ]\n    }\n  ],\n  "model_specs": [\n    {\n      "label_key": "tips",\n      "preprocessing_function_names": [\n        "transform_features"\n      ],\n      "signature_name": "serving_default"\n    }\n  ],\n  "slicing_specs": [\n    {},\n    {\n      "feature_keys": [\n        "trip_start_hour"\n      ]\n    }\n  ]\n}', 'feature_slicing_spec': None, 'fairness_indicator_thresholds': 'null', 'example_splits': 'null', 'module_file': None, 'module_path': None} 'custom_extractors'
INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  signature_name: "serving_default"
  label_key: "tips"
  preprocessing_function_names: "transform_features"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  metrics {
    class_name: "BinaryAccuracy"
    threshold {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
  model_names: ""
}

INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  signature_name: "serving_default"
  label_key: "tips"
  preprocessing_function_names: "transform_features"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  metrics {
    class_name: "BinaryAccuracy"
    threshold {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
  model_names: ""
}

INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  signature_name: "serving_default"
  label_key: "tips"
  preprocessing_function_names: "transform_features"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  metrics {
    class_name: "BinaryAccuracy"
    threshold {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
  model_names: ""
}
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f87b0102150> and <keras.engine.input_layer.InputLayer object at 0x7f875454e810>).
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f87b06c9d50> and <keras.engine.input_layer.InputLayer object at 0x7f87d4041290>).
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f874c8d6a10> and <keras.engine.input_layer.InputLayer object at 0x7f874c8ac0d0>).
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f830dcf9fd0> and <keras.engine.input_layer.InputLayer object at 0x7f830dd87110>).
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f830dc8cad0> and <keras.engine.input_layer.InputLayer object at 0x7f830cf892d0>).
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f87b041add0> and <keras.engine.input_layer.InputLayer object at 0x7f874d6b6d50>).
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f830c42a5d0> and <keras.engine.input_layer.InputLayer object at 0x7f830c3037d0>).
INFO:absl:Evaluation complete. Results written to /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Evaluator/evaluation/8.
INFO:absl:Checking validation results.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:107: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`
INFO:absl:Blessing result True written to /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Evaluator/blessing/8.
INFO:absl:Running publisher for Evaluator
INFO:absl:MetadataStore with DB connection initialized

עכשיו בואו לבחון את ממצאי הפלט של Evaluator .

evaluator.outputs
{'evaluation': Channel(
     type_name: ModelEvaluation
     artifacts: [Artifact(artifact: id: 15
 type_id: 29
 uri: "/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Evaluator/evaluation/8"
 custom_properties {
   key: "name"
   value {
     string_value: "evaluation"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Evaluator"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.5.0"
   }
 }
 state: LIVE
 , artifact_type: id: 29
 name: "ModelEvaluation"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'blessing': Channel(
     type_name: ModelBlessing
     artifacts: [Artifact(artifact: id: 16
 type_id: 30
 uri: "/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Evaluator/blessing/8"
 custom_properties {
   key: "blessed"
   value {
     int_value: 1
   }
 }
 custom_properties {
   key: "current_model"
   value {
     string_value: "/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Trainer/model/6"
   }
 }
 custom_properties {
   key: "current_model_id"
   value {
     int_value: 13
   }
 }
 custom_properties {
   key: "name"
   value {
     string_value: "blessing"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Evaluator"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.5.0"
   }
 }
 state: LIVE
 , artifact_type: id: 30
 name: "ModelBlessing"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 )}

באמצעות evaluation הפלט נוכל להראות את להדמית ברירת המחדל של מדדים הגלובליים על סט ההערכה כול.

context.show(evaluator.outputs['evaluation'])

כדי לראות את ההדמיה עבור מדדי הערכה פרוסים, אנו יכולים להתקשר ישירות לספריית ניתוח המודלים של TensorFlow.

import tensorflow_model_analysis as tfma

# Get the TFMA output result path and load the result.
PATH_TO_RESULT = evaluator.outputs['evaluation'].get()[0].uri
tfma_result = tfma.load_eval_result(PATH_TO_RESULT)

# Show data sliced along feature column trip_start_hour.
tfma.view.render_slicing_metrics(
    tfma_result, slicing_column='trip_start_hour')
SlicingMetricsViewer(config={'weightedExamplesColumn': 'example_count'}, data=[{'slice': 'trip_start_hour:19',…

הדמיה זו מציגה אותם מדדים, אבל מחושב בכל ערך התכונה של trip_start_hour במקום על הסט הערכה כולה.

ניתוח מודלים של TensorFlow תומך בהדמיות רבות אחרות, כגון אינדיקטורים של הוגנות ושרטוט סדרת זמן של ביצועי מודל. כדי ללמוד עוד, ראה את המדריך .

מכיוון שהוספנו ספים לתצורה שלנו, פלט אימות זמין גם. Precence של blessing חפצה מציין כי המודל שלנו עבר אימות. מכיוון שזהו האימות הראשון שמתבצע המועמד מתברך אוטומטית.

blessing_uri = evaluator.outputs['blessing'].get()[0].uri
!ls -l {blessing_uri}
total 0
-rw-rw-r-- 1 kbuilder kbuilder 0 Dec 21 10:13 BLESSED

כעת ניתן גם לאמת את ההצלחה על ידי טעינת רשומת תוצאת האימות:

PATH_TO_RESULT = evaluator.outputs['evaluation'].get()[0].uri
print(tfma.load_validation_result(PATH_TO_RESULT))
validation_ok: true
validation_details {
  slicing_details {
    slicing_spec {
    }
    num_matching_slices: 25
  }
}

דוֹחֵף

Pusher הרכיב הוא בדרך כלל בסוף צינור TFX. זה בודק אם מודל עבר אימות, ואם כן, יצוא מודל _serving_model_dir .

pusher = tfx.components.Pusher(
    model=trainer.outputs['model'],
    model_blessing=evaluator.outputs['blessing'],
    push_destination=tfx.proto.PushDestination(
        filesystem=tfx.proto.PushDestination.Filesystem(
            base_directory=_serving_model_dir)))
context.run(pusher)
INFO:absl:Running driver for Pusher
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for Pusher
INFO:absl:Model version: 1640081600
INFO:absl:Model written to serving path /tmp/tmpkvhhk5j5/serving_model/taxi_simple/1640081600.
INFO:absl:Model pushed to /tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Pusher/pushed_model/9.
INFO:absl:Running publisher for Pusher
INFO:absl:MetadataStore with DB connection initialized

בואו לבחון את ממצאי הפלט של Pusher .

pusher.outputs
{'pushed_model': Channel(
     type_name: PushedModel
     artifacts: [Artifact(artifact: id: 17
 type_id: 32
 uri: "/tmp/tfx-interactive-2021-12-21T10_09_51.902969-bvucg0eq/Pusher/pushed_model/9"
 custom_properties {
   key: "name"
   value {
     string_value: "pushed_model"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Pusher"
   }
 }
 custom_properties {
   key: "pushed"
   value {
     int_value: 1
   }
 }
 custom_properties {
   key: "pushed_destination"
   value {
     string_value: "/tmp/tmpkvhhk5j5/serving_model/taxi_simple/1640081600"
   }
 }
 custom_properties {
   key: "pushed_version"
   value {
     string_value: "1640081600"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.5.0"
   }
 }
 state: LIVE
 , artifact_type: id: 32
 name: "PushedModel"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 )}

במיוחד, ה-Pusher ייצא את הדגם שלך בפורמט SavedModel, שנראה כך:

push_uri = pusher.outputs['pushed_model'].get()[0].uri
model = tf.saved_model.load(push_uri)

for item in model.signatures.items():
  pp.pprint(item)
('serving_default',
 <ConcreteFunction signature_wrapper(*, examples) at 0x7F82F31FDE50>)
('transform_features',
 <ConcreteFunction signature_wrapper(*, examples) at 0x7F82F31AC410>)

סיימנו את הסיור שלנו ברכיבי TFX מובנים!