6월 14-15일 우크라이나 DevFest에 참여하세요. 지금 온라인 등록

TFX 파이프라인 및 TensorFlow 데이터 검증을 사용한 데이터 검증

이 노트북 기반 자습서에서는 TFX 파이프라인을 생성 및 실행하여 입력 데이터의 유효성을 검사하고 ML 모델을 생성합니다. 이 노트북은 우리가 내장 된 TFX 파이프 라인을 기반으로 간단한 TFX 파이프 라인 튜토리얼 . 해당 튜토리얼을 아직 읽지 않았다면 이 노트북을 계속 진행하기 전에 읽어야 합니다.

모든 데이터 과학 또는 ML 프로젝트의 첫 번째 작업은 다음을 포함하는 데이터를 이해하고 정리하는 것입니다.

  • 각 기능에 대한 데이터 유형, 분포 및 기타 정보(예: 평균값 또는 고유 수) 이해
  • 데이터를 설명하는 예비 스키마 생성
  • 주어진 스키마와 관련하여 데이터의 이상 및 누락된 값 식별

이 자습서에서는 두 개의 TFX 파이프라인을 만듭니다.

먼저 데이터 세트를 분석하고 주어진 데이터 세트의 예비 스키마를 생성하는 파이프라인을 생성합니다. 이 파이프 라인은 두 가지 새로운 구성 요소가 포함됩니다 StatisticsGenSchemaGen .

데이터의 적절한 스키마가 있으면 이전 자습서의 파이프라인을 기반으로 ML 분류 모델을 훈련하는 파이프라인을 생성합니다. 이 파이프 라인에서, 우리는 첫 번째 파이프 라인 및 새로운 구성 요소에서 스키마를 사용합니다 ExampleValidator 입력 데이터의 유효성을 검사.

세 가지 새로운 구성 요소, StatisticsGen,에서는 schemagen 및 ExampleValidator는, 데이터 분석 및 검증을위한 TFX 구성 요소입니다, 그들은 사용하여 구현된다 TensorFlow 데이터 유효성 검사의 라이브러리를.

참조하시기 바랍니다 TFX 파이프 라인은 이해 TFX에서 다양한 개념에 대해 더 배울 수 있습니다.

설정

먼저 TFX Python 패키지를 설치하고 모델에 사용할 데이터 세트를 다운로드해야 합니다.

핍 업그레이드

로컬에서 실행할 때 시스템에서 Pip를 업그레이드하지 않으려면 Colab에서 실행 중인지 확인하세요. 물론 로컬 시스템은 별도로 업그레이드할 수 있습니다.

try:
  import colab
  !pip install --upgrade pip
except:
  pass

TFX 설치

pip install -U tfx

런타임을 다시 시작하셨습니까?

Google Colab을 사용하는 경우 위의 셀을 처음 실행할 때 위의 "RESTART RUNTIME" 버튼을 클릭하거나 "런타임 > 런타임 다시 시작..." 메뉴를 사용하여 런타임을 다시 시작해야 합니다. Colab이 패키지를 로드하는 방식 때문입니다.

TensorFlow 및 TFX 버전을 확인하세요.

import tensorflow as tf
print('TensorFlow version: {}'.format(tf.__version__))
from tfx import v1 as tfx
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.6.2
TFX version: 1.4.0

변수 설정

파이프라인을 정의하는 데 사용되는 몇 가지 변수가 있습니다. 이러한 변수를 원하는 대로 사용자 지정할 수 있습니다. 기본적으로 파이프라인의 모든 출력은 현재 디렉터리 아래에 생성됩니다.

import os

# We will create two pipelines. One for schema generation and one for training.
SCHEMA_PIPELINE_NAME = "penguin-tfdv-schema"
PIPELINE_NAME = "penguin-tfdv"

# Output directory to store artifacts generated from the pipeline.
SCHEMA_PIPELINE_ROOT = os.path.join('pipelines', SCHEMA_PIPELINE_NAME)
PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME)
# Path to a SQLite DB file to use as an MLMD storage.
SCHEMA_METADATA_PATH = os.path.join('metadata', SCHEMA_PIPELINE_NAME,
                                    'metadata.db')
METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db')

# Output directory where created models from the pipeline will be exported.
SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME)

from absl import logging
logging.set_verbosity(logging.INFO)  # Set default logging level.

예시 데이터 준비

TFX 파이프라인에서 사용할 예제 데이터 세트를 다운로드합니다. 우리가 사용하고있는 데이터 세트는 팔머 펭귄 데이터 세트 다른에 사용되는 TFX 예 .

이 데이터세트에는 네 가지 숫자 기능이 있습니다.

  • culmen_length_mm
  • culmen_깊이_mm
  • 플리퍼_길이_mm
  • body_mass_g

모든 기능은 이미 [0,1] 범위를 갖도록 정규화되었습니다. 우리는 예측하는 분류 모델을 구축 할 것입니다 species 펭귄을.

TFX ExampleGen 구성 요소는 디렉터리에서 입력을 읽기 때문에 디렉터리를 만들고 데이터 집합을 디렉터리에 복사해야 합니다.

import urllib.request
import tempfile

DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data')  # Create a temporary directory.
_data_url = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/data/labelled/penguins_processed.csv'
_data_filepath = os.path.join(DATA_ROOT, "data.csv")
urllib.request.urlretrieve(_data_url, _data_filepath)
('/tmp/tfx-datan3p7t1d2/data.csv', <http.client.HTTPMessage at 0x7f8d2f9f9110>)

CSV 파일을 간단히 살펴보세요.

head {_data_filepath}
species,culmen_length_mm,culmen_depth_mm,flipper_length_mm,body_mass_g
0,0.2545454545454545,0.6666666666666666,0.15254237288135594,0.2916666666666667
0,0.26909090909090905,0.5119047619047618,0.23728813559322035,0.3055555555555556
0,0.29818181818181805,0.5833333333333334,0.3898305084745763,0.1527777777777778
0,0.16727272727272732,0.7380952380952381,0.3559322033898305,0.20833333333333334
0,0.26181818181818167,0.892857142857143,0.3050847457627119,0.2638888888888889
0,0.24727272727272717,0.5595238095238096,0.15254237288135594,0.2569444444444444
0,0.25818181818181823,0.773809523809524,0.3898305084745763,0.5486111111111112
0,0.32727272727272727,0.5357142857142859,0.1694915254237288,0.1388888888888889
0,0.23636363636363636,0.9642857142857142,0.3220338983050847,0.3055555555555556

5개의 기능 열을 볼 수 있어야 합니다. species 0, 1 또는 2 중 하나이며, 다른 모든 기능은 우리는이 데이터 세트를 분석하는 TFX 파이프 라인을 만듭니다 0과 1 사이의 값을 가져야한다.

예비 스키마 생성

TFX 파이프라인은 Python API를 사용하여 정의됩니다. 입력 예제에서 자동으로 스키마를 생성하는 파이프라인을 생성합니다. 이 스키마는 사람이 검토하고 필요에 따라 조정할 수 있습니다. 스키마가 완료되면 이후 작업에서 교육 및 예제 유효성 검사에 사용할 수 있습니다.

뿐만 아니라 CsvExampleGen 에 사용되는 간단한 TFX 파이프 라인 튜토리얼 , 우리는 사용 StatisticsGenSchemaGen :

각 구성 요소에 대한 가이드를 참조하거나 TFX 구성 요소는 튜토리얼 이러한 구성 요소에 대한 자세한 배울 수 있습니다.

파이프라인 정의 작성

TFX 파이프라인을 생성하는 함수를 정의합니다. Pipeline 객체는 TFX 지원하는 파이프 라인 오케스트레이션 시스템 중 하나를 사용하여 실행할 수있는 TFX 파이프 라인을 나타냅니다.

def _create_schema_pipeline(pipeline_name: str,
                            pipeline_root: str,
                            data_root: str,
                            metadata_path: str) -> tfx.dsl.Pipeline:
  """Creates a pipeline for schema generation."""
  # Brings data into the pipeline.
  example_gen = tfx.components.CsvExampleGen(input_base=data_root)

  # NEW: Computes statistics over data for visualization and schema generation.
  statistics_gen = tfx.components.StatisticsGen(
      examples=example_gen.outputs['examples'])

  # NEW: Generates schema based on the generated statistics.
  schema_gen = tfx.components.SchemaGen(
      statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True)

  components = [
      example_gen,
      statistics_gen,
      schema_gen,
  ]

  return tfx.dsl.Pipeline(
      pipeline_name=pipeline_name,
      pipeline_root=pipeline_root,
      metadata_connection_config=tfx.orchestration.metadata
      .sqlite_metadata_connection_config(metadata_path),
      components=components)

파이프라인 실행

우리는 사용 LocalDagRunner 이전 튜토리얼한다.

tfx.orchestration.LocalDagRunner().run(
  _create_schema_pipeline(
      pipeline_name=SCHEMA_PIPELINE_NAME,
      pipeline_root=SCHEMA_PIPELINE_ROOT,
      data_root=DATA_ROOT,
      metadata_path=SCHEMA_METADATA_PATH))
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Using deployment config:
 executor_specs {
  key: "CsvExampleGen"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor"
      }
    }
  }
}
executor_specs {
  key: "SchemaGen"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.schema_gen.executor.Executor"
    }
  }
}
executor_specs {
  key: "StatisticsGen"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.statistics_gen.executor.Executor"
      }
    }
  }
}
custom_driver_specs {
  key: "CsvExampleGen"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.example_gen.driver.FileBasedDriver"
    }
  }
}
metadata_connection_config {
  sqlite {
    filename_uri: "metadata/penguin-tfdv-schema/metadata.db"
    connection_mode: READWRITE_OPENCREATE
  }
}

INFO:absl:Using connection config:
 sqlite {
  filename_uri: "metadata/penguin-tfdv-schema/metadata.db"
  connection_mode: READWRITE_OPENCREATE
}

INFO:absl:Component CsvExampleGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:06.420329"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-datan3p7t1d2"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "StatisticsGen"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
WARNING: Logging before InitGoogleLogging() is written to STDERR
I1205 11:10:06.444468  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 11:10:06.453292  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 11:10:06.460209  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 11:10:06.467104  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:select span and version = (0, None)
INFO:absl:latest span and version = (0, None)
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 1
I1205 11:10:06.521926  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}), exec_properties={'input_config': '{\n  "splits": [\n    {\n      "name": "single_split",\n      "pattern": "*"\n    }\n  ]\n}', 'output_config': '{\n  "split_config": {\n    "splits": [\n      {\n        "hash_buckets": 2,\n        "name": "train"\n      },\n      {\n        "hash_buckets": 1,\n        "name": "eval"\n      }\n    ]\n  }\n}', 'input_base': '/tmp/tfx-datan3p7t1d2', 'output_file_format': 5, 'output_data_format': 6, 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606'}, execution_output_uri='pipelines/penguin-tfdv-schema/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv-schema/CsvExampleGen/.system/stateful_working_dir/2021-12-05T11:10:06.420329', tmp_dir='pipelines/penguin-tfdv-schema/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:06.420329"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-datan3p7t1d2"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "StatisticsGen"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv-schema"
, pipeline_run_id='2021-12-05T11:10:06.420329')
INFO:absl:Generating examples.
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
INFO:absl:Processing input csv data /tmp/tfx-datan3p7t1d2/* to TFExample.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
INFO:absl:Examples generated.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 1 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}) for execution 1
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component CsvExampleGen is finished.
INFO:absl:Component StatisticsGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.statistics_gen.component.StatisticsGen"
  }
  id: "StatisticsGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:06.420329"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema.StatisticsGen"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:06.420329"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "statistics"
    value {
      artifact_spec {
        type {
          name: "ExampleStatistics"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "SchemaGen"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:08.104562  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 2
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=2, input_dict={'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-tfdv-schema/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702608076
last_update_time_since_epoch: 1638702608076
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}, output_dict=defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:StatisticsGen:statistics:0"
  }
}
, artifact_type: name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}), exec_properties={'exclude_splits': '[]'}, execution_output_uri='pipelines/penguin-tfdv-schema/StatisticsGen/.system/executor_execution/2/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv-schema/StatisticsGen/.system/stateful_working_dir/2021-12-05T11:10:06.420329', tmp_dir='pipelines/penguin-tfdv-schema/StatisticsGen/.system/executor_execution/2/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.statistics_gen.component.StatisticsGen"
  }
  id: "StatisticsGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:06.420329"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema.StatisticsGen"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:06.420329"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "statistics"
    value {
      artifact_spec {
        type {
          name: "ExampleStatistics"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "SchemaGen"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv-schema"
, pipeline_run_id='2021-12-05T11:10:06.420329')
INFO:absl:Generating statistics for split train.
INFO:absl:Statistics for split train written to pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2/Split-train.
INFO:absl:Generating statistics for split eval.
INFO:absl:Statistics for split eval written to pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2/Split-eval.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 2 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:StatisticsGen:statistics:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}) for execution 2
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component StatisticsGen is finished.
INFO:absl:Component SchemaGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.schema_gen.component.SchemaGen"
  }
  id: "SchemaGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:06.420329"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema.SchemaGen"
      }
    }
  }
}
inputs {
  inputs {
    key: "statistics"
    value {
      channels {
        producer_node_query {
          id: "StatisticsGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:06.420329"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema.StatisticsGen"
            }
          }
        }
        artifact_query {
          type {
            name: "ExampleStatistics"
          }
        }
        output_key: "statistics"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "schema"
    value {
      artifact_spec {
        type {
          name: "Schema"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
  parameters {
    key: "infer_feature_shape"
    value {
      field_value {
        int_value: 1
      }
    }
  }
}
upstream_nodes: "StatisticsGen"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:10.975282  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 3
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'statistics': [Artifact(artifact: id: 2
type_id: 17
uri: "pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:StatisticsGen:statistics:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702610957
last_update_time_since_epoch: 1638702610957
, artifact_type: id: 17
name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}, output_dict=defaultdict(<class 'list'>, {'schema': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/SchemaGen/schema/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:SchemaGen:schema:0"
  }
}
, artifact_type: name: "Schema"
)]}), exec_properties={'exclude_splits': '[]', 'infer_feature_shape': 1}, execution_output_uri='pipelines/penguin-tfdv-schema/SchemaGen/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv-schema/SchemaGen/.system/stateful_working_dir/2021-12-05T11:10:06.420329', tmp_dir='pipelines/penguin-tfdv-schema/SchemaGen/.system/executor_execution/3/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.schema_gen.component.SchemaGen"
  }
  id: "SchemaGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:06.420329"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema.SchemaGen"
      }
    }
  }
}
inputs {
  inputs {
    key: "statistics"
    value {
      channels {
        producer_node_query {
          id: "StatisticsGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:06.420329"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema.StatisticsGen"
            }
          }
        }
        artifact_query {
          type {
            name: "ExampleStatistics"
          }
        }
        output_key: "statistics"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "schema"
    value {
      artifact_spec {
        type {
          name: "Schema"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
  parameters {
    key: "infer_feature_shape"
    value {
      field_value {
        int_value: 1
      }
    }
  }
}
upstream_nodes: "StatisticsGen"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv-schema"
, pipeline_run_id='2021-12-05T11:10:06.420329')
INFO:absl:Processing schema from statistics for split train.
INFO:absl:Processing schema from statistics for split eval.
INFO:absl:Schema written to pipelines/penguin-tfdv-schema/SchemaGen/schema/3/schema.pbtxt.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 3 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'schema': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/SchemaGen/schema/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:SchemaGen:schema:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Schema"
)]}) for execution 3
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component SchemaGen is finished.
I1205 11:10:11.010145  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type

"INFO:absl:Component SchemaGen이 완료되었습니다."가 표시되어야 합니다. 파이프라인이 성공적으로 완료된 경우.

데이터세트를 이해하기 위해 파이프라인의 출력을 조사할 것입니다.

파이프라인의 출력 검토

이전 튜토리얼에서 설명한 바와 같이, TFX 파이프 라인 출력 아티팩트 및 두 종류의 생성 메타 데이터 DB (MLMD) 아티팩트 파이프 라인 실행에 대한 메타 데이터를 포함한다. 위의 셀에서 이러한 출력의 위치를 ​​정의했습니다. 기본적으로, 유물은 아래에 저장됩니다 pipelines 디렉토리 및 메타 데이터는 아래에 sqlite가 데이터베이스로 저장되어있는 metadata 디렉토리.

MLMD API를 사용하여 프로그래밍 방식으로 이러한 출력을 찾을 수 있습니다. 먼저 방금 생성된 출력 아티팩트를 검색하기 위한 몇 가지 유틸리티 함수를 정의합니다.

from ml_metadata.proto import metadata_store_pb2
# Non-public APIs, just for showcase.
from tfx.orchestration.portable.mlmd import execution_lib

# TODO(b/171447278): Move these functions into the TFX library.

def get_latest_artifacts(metadata, pipeline_name, component_id):
  """Output artifacts of the latest run of the component."""
  context = metadata.store.get_context_by_type_and_name(
      'node', f'{pipeline_name}.{component_id}')
  executions = metadata.store.get_executions_by_context(context.id)
  latest_execution = max(executions,
                         key=lambda e:e.last_update_time_since_epoch)
  return execution_lib.get_artifacts_dict(metadata, latest_execution.id,
                                          [metadata_store_pb2.Event.OUTPUT])

# Non-public APIs, just for showcase.
from tfx.orchestration.experimental.interactive import visualizations

def visualize_artifacts(artifacts):
  """Visualizes artifacts using standard visualization modules."""
  for artifact in artifacts:
    visualization = visualizations.get_registry().get_visualization(
        artifact.type_name)
    if visualization:
      visualization.display(artifact)

from tfx.orchestration.experimental.interactive import standard_visualizations
standard_visualizations.register_standard_visualizations()

이제 파이프라인 실행의 출력을 검사할 수 있습니다.

# Non-public APIs, just for showcase.
from tfx.orchestration.metadata import Metadata
from tfx.types import standard_component_specs

metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config(
    SCHEMA_METADATA_PATH)

with Metadata(metadata_connection_config) as metadata_handler:
  # Find output artifacts from MLMD.
  stat_gen_output = get_latest_artifacts(metadata_handler, SCHEMA_PIPELINE_NAME,
                                         'StatisticsGen')
  stats_artifacts = stat_gen_output[standard_component_specs.STATISTICS_KEY]

  schema_gen_output = get_latest_artifacts(metadata_handler,
                                           SCHEMA_PIPELINE_NAME, 'SchemaGen')
  schema_artifacts = schema_gen_output[standard_component_specs.SCHEMA_KEY]
INFO:absl:MetadataStore with DB connection initialized

각 구성 요소의 출력을 검토할 시간입니다. 상술 한 바와 같이, Tensorflow 데이터 유효성 (TFDV)가 사용된다 StatisticsGenSchemaGen 및 TFDV 이러한 구성 요소로부터의 출력의 시각화를 제공한다.

이 자습서에서는 TFDV를 내부적으로 사용하여 시각화를 표시하는 TFX의 시각화 도우미 메서드를 사용합니다.

StatisticsGen의 출력 검사

# docs-infra: no-execute
visualize_artifacts(stats_artifacts)

입력 데이터에 대한 다양한 통계를 볼 수 있습니다. 이 통계에 공급 SchemaGen 자동으로 데이터의 초기 스키마를 구성 할 수 있습니다.

SchemaGen의 출력 검사

visualize_artifacts(schema_artifacts)

이 스키마는 StatisticsGen의 출력에서 ​​자동으로 유추됩니다. 4개의 FLOAT 기능과 1개의 INT 기능을 볼 수 있어야 합니다.

나중에 사용할 수 있도록 스키마 내보내기

생성된 스키마를 검토하고 수정해야 합니다. 검토된 스키마는 ML 모델 교육을 위한 후속 파이프라인에서 사용하기 위해 지속되어야 합니다. 즉, 실제 사용 사례를 위해 버전 제어 시스템에 스키마 파일을 추가할 수 있습니다. 이 튜토리얼에서는 단순화를 위해 미리 정의된 파일 시스템 경로에 스키마를 복사합니다.

import shutil

_schema_filename = 'schema.pbtxt'
SCHEMA_PATH = 'schema'

os.makedirs(SCHEMA_PATH, exist_ok=True)
_generated_path = os.path.join(schema_artifacts[0].uri, _schema_filename)

# Copy the 'schema.pbtxt' file from the artifact uri to a predefined path.
shutil.copy(_generated_path, SCHEMA_PATH)
'schema/schema.pbtxt'

스키마 파일을 사용하는 프로토콜 버퍼의 텍스트 형식 과의 인스턴스 TensorFlow 메타 데이터 스키마 프로토를 .

print(f'Schema at {SCHEMA_PATH}-----')
!cat {SCHEMA_PATH}/*
Schema at schema-----
feature {
  name: "body_mass_g"
  type: FLOAT
  presence {
    min_fraction: 1.0
    min_count: 1
  }
  shape {
    dim {
      size: 1
    }
  }
}
feature {
  name: "culmen_depth_mm"
  type: FLOAT
  presence {
    min_fraction: 1.0
    min_count: 1
  }
  shape {
    dim {
      size: 1
    }
  }
}
feature {
  name: "culmen_length_mm"
  type: FLOAT
  presence {
    min_fraction: 1.0
    min_count: 1
  }
  shape {
    dim {
      size: 1
    }
  }
}
feature {
  name: "flipper_length_mm"
  type: FLOAT
  presence {
    min_fraction: 1.0
    min_count: 1
  }
  shape {
    dim {
      size: 1
    }
  }
}
feature {
  name: "species"
  type: INT
  presence {
    min_fraction: 1.0
    min_count: 1
  }
  shape {
    dim {
      size: 1
    }
  }
}

스키마 정의를 검토하고 필요에 따라 편집해야 합니다. 이 자습서에서는 생성된 스키마를 변경하지 않고 그대로 사용합니다.

입력 예시 검증 및 ML 모델 학습

우리는 우리가 만든 파이프 라인으로 돌아 갈 것입니다 간단한 TFX 파이프 라인 튜토리얼 ML 모델을 훈련하고 모델 훈련 코드를 작성하기 위해 생성 된 스키마를 사용하는.

우리는 또한 추가 할 것이다 ExampleValidator의 스키마에 대한 입력 데이터 세트에서 이상 및 누락 된 값을 찾습니다 요소를.

모델 학습 코드 작성

우리는 우리가 그랬던 것처럼 모델 코드를 작성할 필요가 간단한 TFX 파이프 라인 튜토리얼 .

모델 자체는 이전 튜토리얼과 동일하지만 이번에는 수동으로 기능을 지정하는 대신 이전 파이프라인에서 생성된 스키마를 사용합니다. 대부분의 코드는 변경되지 않았습니다. 유일한 차이점은 이 파일에서 기능의 이름과 유형을 지정할 필요가 없다는 것입니다. 대신, 우리는 스키마 파일을 읽습니다.

_trainer_module_file = 'penguin_trainer.py'
%%writefile {_trainer_module_file}

from typing import List
from absl import logging
import tensorflow as tf
from tensorflow import keras
from tensorflow_transform.tf_metadata import schema_utils

from tfx import v1 as tfx
from tfx_bsl.public import tfxio
from tensorflow_metadata.proto.v0 import schema_pb2

# We don't need to specify _FEATURE_KEYS and _FEATURE_SPEC any more.
# Those information can be read from the given schema file.

_LABEL_KEY = 'species'

_TRAIN_BATCH_SIZE = 20
_EVAL_BATCH_SIZE = 10

def _input_fn(file_pattern: List[str],
              data_accessor: tfx.components.DataAccessor,
              schema: schema_pb2.Schema,
              batch_size: int = 200) -> tf.data.Dataset:
  """Generates features and label for training.

  Args:
    file_pattern: List of paths or patterns of input tfrecord files.
    data_accessor: DataAccessor for converting input to RecordBatch.
    schema: schema of the input data.
    batch_size: representing the number of consecutive elements of returned
      dataset to combine in a single batch

  Returns:
    A dataset that contains (features, indices) tuple where features is a
      dictionary of Tensors, and indices is a single Tensor of label indices.
  """
  return data_accessor.tf_dataset_factory(
      file_pattern,
      tfxio.TensorFlowDatasetOptions(
          batch_size=batch_size, label_key=_LABEL_KEY),
      schema=schema).repeat()


def _build_keras_model(schema: schema_pb2.Schema) -> tf.keras.Model:
  """Creates a DNN Keras model for classifying penguin data.

  Returns:
    A Keras Model.
  """
  # The model below is built with Functional API, please refer to
  # https://www.tensorflow.org/guide/keras/overview for all API options.

  # ++ Changed code: Uses all features in the schema except the label.
  feature_keys = [f.name for f in schema.feature if f.name != _LABEL_KEY]
  inputs = [keras.layers.Input(shape=(1,), name=f) for f in feature_keys]
  # ++ End of the changed code.

  d = keras.layers.concatenate(inputs)
  for _ in range(2):
    d = keras.layers.Dense(8, activation='relu')(d)
  outputs = keras.layers.Dense(3)(d)

  model = keras.Model(inputs=inputs, outputs=outputs)
  model.compile(
      optimizer=keras.optimizers.Adam(1e-2),
      loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
      metrics=[keras.metrics.SparseCategoricalAccuracy()])

  model.summary(print_fn=logging.info)
  return model


# TFX Trainer will call this function.
def run_fn(fn_args: tfx.components.FnArgs):
  """Train the model based on given args.

  Args:
    fn_args: Holds args used to train the model as name/value pairs.
  """

  # ++ Changed code: Reads in schema file passed to the Trainer component.
  schema = tfx.utils.parse_pbtxt_file(fn_args.schema_path, schema_pb2.Schema())
  # ++ End of the changed code.

  train_dataset = _input_fn(
      fn_args.train_files,
      fn_args.data_accessor,
      schema,
      batch_size=_TRAIN_BATCH_SIZE)
  eval_dataset = _input_fn(
      fn_args.eval_files,
      fn_args.data_accessor,
      schema,
      batch_size=_EVAL_BATCH_SIZE)

  model = _build_keras_model(schema)
  model.fit(
      train_dataset,
      steps_per_epoch=fn_args.train_steps,
      validation_data=eval_dataset,
      validation_steps=fn_args.eval_steps)

  # The result of the training should be saved in `fn_args.serving_model_dir`
  # directory.
  model.save(fn_args.serving_model_dir, save_format='tf')
Writing penguin_trainer.py

이제 모델 교육을 위한 TFX 파이프라인을 구축하기 위한 모든 준비 단계를 완료했습니다.

파이프라인 정의 작성

우리는 두 가지 새로운 구성 요소를 추가합니다 ImporterExampleValidator . Importer는 외부 파일을 TFX 파이프라인으로 가져옵니다. 이 경우 스키마 정의가 포함된 파일입니다. ExampleValidator는 입력 데이터를 검사하고 모든 입력 데이터가 우리가 제공한 데이터 스키마를 준수하는지 확인합니다.

def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,
                     schema_path: str, module_file: str, serving_model_dir: str,
                     metadata_path: str) -> tfx.dsl.Pipeline:
  """Creates a pipeline using predefined schema with TFX."""
  # Brings data into the pipeline.
  example_gen = tfx.components.CsvExampleGen(input_base=data_root)

  # Computes statistics over data for visualization and example validation.
  statistics_gen = tfx.components.StatisticsGen(
      examples=example_gen.outputs['examples'])

  # NEW: Import the schema.
  schema_importer = tfx.dsl.Importer(
      source_uri=schema_path,
      artifact_type=tfx.types.standard_artifacts.Schema).with_id(
          'schema_importer')

  # NEW: Performs anomaly detection based on statistics and data schema.
  example_validator = tfx.components.ExampleValidator(
      statistics=statistics_gen.outputs['statistics'],
      schema=schema_importer.outputs['result'])

  # Uses user-provided Python function that trains a model.
  trainer = tfx.components.Trainer(
      module_file=module_file,
      examples=example_gen.outputs['examples'],
      schema=schema_importer.outputs['result'],  # Pass the imported schema.
      train_args=tfx.proto.TrainArgs(num_steps=100),
      eval_args=tfx.proto.EvalArgs(num_steps=5))

  # Pushes the model to a filesystem destination.
  pusher = tfx.components.Pusher(
      model=trainer.outputs['model'],
      push_destination=tfx.proto.PushDestination(
          filesystem=tfx.proto.PushDestination.Filesystem(
              base_directory=serving_model_dir)))

  components = [
      example_gen,

      # NEW: Following three components were added to the pipeline.
      statistics_gen,
      schema_importer,
      example_validator,

      trainer,
      pusher,
  ]

  return tfx.dsl.Pipeline(
      pipeline_name=pipeline_name,
      pipeline_root=pipeline_root,
      metadata_connection_config=tfx.orchestration.metadata
      .sqlite_metadata_connection_config(metadata_path),
      components=components)

파이프라인 실행

tfx.orchestration.LocalDagRunner().run(
  _create_pipeline(
      pipeline_name=PIPELINE_NAME,
      pipeline_root=PIPELINE_ROOT,
      data_root=DATA_ROOT,
      schema_path=SCHEMA_PATH,
      module_file=_trainer_module_file,
      serving_model_dir=SERVING_MODEL_DIR,
      metadata_path=METADATA_PATH))
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_trainer.py' (including modules: ['penguin_trainer']).
INFO:absl:User module package has hash fingerprint version 000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmp50dqc5bp/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmp6_kn7s87', '--dist-dir', '/tmp/tmpwt7plki0']
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
  setuptools.SetuptoolsDeprecationWarning,
listing git files failed - pretending there aren't any
INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl'; target user module is 'penguin_trainer'.
INFO:absl:Full user module path is 'penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl'
INFO:absl:Using deployment config:
 executor_specs {
  key: "CsvExampleGen"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor"
      }
    }
  }
}
executor_specs {
  key: "ExampleValidator"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.example_validator.executor.Executor"
    }
  }
}
executor_specs {
  key: "Pusher"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.pusher.executor.Executor"
    }
  }
}
executor_specs {
  key: "StatisticsGen"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.statistics_gen.executor.Executor"
      }
    }
  }
}
executor_specs {
  key: "Trainer"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.trainer.executor.GenericExecutor"
    }
  }
}
custom_driver_specs {
  key: "CsvExampleGen"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.example_gen.driver.FileBasedDriver"
    }
  }
}
metadata_connection_config {
  sqlite {
    filename_uri: "metadata/penguin-tfdv/metadata.db"
    connection_mode: READWRITE_OPENCREATE
  }
}

INFO:absl:Using connection config:
 sqlite {
  filename_uri: "metadata/penguin-tfdv/metadata.db"
  connection_mode: READWRITE_OPENCREATE
}

INFO:absl:Component CsvExampleGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-datan3p7t1d2"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "StatisticsGen"
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:11.685647  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 11:10:11.692644  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 11:10:11.699625  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 11:10:11.708110  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:select span and version = (0, None)
INFO:absl:latest span and version = (0, None)
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 1
I1205 11:10:11.722760  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfdv/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}), exec_properties={'input_base': '/tmp/tfx-datan3p7t1d2', 'input_config': '{\n  "splits": [\n    {\n      "name": "single_split",\n      "pattern": "*"\n    }\n  ]\n}', 'output_data_format': 6, 'output_config': '{\n  "split_config": {\n    "splits": [\n      {\n        "hash_buckets": 2,\n        "name": "train"\n      },\n      {\n        "hash_buckets": 1,\n        "name": "eval"\n      }\n    ]\n  }\n}', 'output_file_format': 5, 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606'}, execution_output_uri='pipelines/penguin-tfdv/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/CsvExampleGen/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-datan3p7t1d2"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "StatisticsGen"
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv"
, pipeline_run_id='2021-12-05T11:10:11.667239')
INFO:absl:Generating examples.
INFO:absl:Processing input csv data /tmp/tfx-datan3p7t1d2/* to TFExample.
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying penguin_trainer.py -> build/lib
installing to /tmp/tmp6_kn7s87
running install
running install_lib
copying build/lib/penguin_trainer.py -> /tmp/tmp6_kn7s87
running install_egg_info
running egg_info
creating tfx_user_code_Trainer.egg-info
writing tfx_user_code_Trainer.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
Copying tfx_user_code_Trainer.egg-info to /tmp/tmp6_kn7s87/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3.7.egg-info
running install_scripts
creating /tmp/tmp6_kn7s87/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/WHEEL
creating '/tmp/tmpwt7plki0/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl' and adding '/tmp/tmp6_kn7s87' to it
adding 'penguin_trainer.py'
adding 'tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/METADATA'
adding 'tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/WHEEL'
adding 'tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/top_level.txt'
adding 'tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/RECORD'
removing /tmp/tmp6_kn7s87
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
INFO:absl:Examples generated.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 1 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfdv/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}) for execution 1
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component CsvExampleGen is finished.
INFO:absl:Component schema_importer is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.dsl.components.common.importer.Importer"
  }
  id: "schema_importer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.schema_importer"
      }
    }
  }
}
outputs {
  outputs {
    key: "result"
    value {
      artifact_spec {
        type {
          name: "Schema"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "artifact_uri"
    value {
      field_value {
        string_value: "schema"
      }
    }
  }
  parameters {
    key: "reimport"
    value {
      field_value {
        int_value: 0
      }
    }
  }
}
downstream_nodes: "ExampleValidator"
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:Running as an importer node.
INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:12.796727  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Processing source uri: schema, properties: {}, custom_properties: {}
INFO:absl:Component schema_importer is finished.
I1205 11:10:12.806819  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component StatisticsGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.statistics_gen.component.StatisticsGen"
  }
  id: "StatisticsGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.StatisticsGen"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "statistics"
    value {
      artifact_spec {
        type {
          name: "ExampleStatistics"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "ExampleValidator"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:12.827589  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 3
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-tfdv/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702612780
last_update_time_since_epoch: 1638702612780
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}, output_dict=defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-tfdv/StatisticsGen/statistics/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:StatisticsGen:statistics:0"
  }
}
, artifact_type: name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}), exec_properties={'exclude_splits': '[]'}, execution_output_uri='pipelines/penguin-tfdv/StatisticsGen/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/StatisticsGen/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/StatisticsGen/.system/executor_execution/3/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.statistics_gen.component.StatisticsGen"
  }
  id: "StatisticsGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.StatisticsGen"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "statistics"
    value {
      artifact_spec {
        type {
          name: "ExampleStatistics"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "ExampleValidator"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv"
, pipeline_run_id='2021-12-05T11:10:11.667239')
INFO:absl:Generating statistics for split train.
INFO:absl:Statistics for split train written to pipelines/penguin-tfdv/StatisticsGen/statistics/3/Split-train.
INFO:absl:Generating statistics for split eval.
INFO:absl:Statistics for split eval written to pipelines/penguin-tfdv/StatisticsGen/statistics/3/Split-eval.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 3 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-tfdv/StatisticsGen/statistics/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:StatisticsGen:statistics:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}) for execution 3
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component StatisticsGen is finished.
INFO:absl:Component Trainer is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.trainer.component.Trainer"
  }
  id: "Trainer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.Trainer"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
  inputs {
    key: "schema"
    value {
      channels {
        producer_node_query {
          id: "schema_importer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.schema_importer"
            }
          }
        }
        artifact_query {
          type {
            name: "Schema"
          }
        }
        output_key: "result"
      }
    }
  }
}
outputs {
  outputs {
    key: "model"
    value {
      artifact_spec {
        type {
          name: "Model"
        }
      }
    }
  }
  outputs {
    key: "model_run"
    value {
      artifact_spec {
        type {
          name: "ModelRun"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "eval_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 5\n}"
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl"
      }
    }
  }
  parameters {
    key: "train_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 100\n}"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
upstream_nodes: "schema_importer"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:15.426606  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 4
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=4, input_dict={'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-tfdv/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702612780
last_update_time_since_epoch: 1638702612780
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)], 'schema': [Artifact(artifact: id: 2
type_id: 17
uri: "schema"
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702612810
last_update_time_since_epoch: 1638702612810
, artifact_type: id: 17
name: "Schema"
)]}, output_dict=defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Trainer/model_run/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model_run:0"
  }
}
, artifact_type: name: "ModelRun"
)], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Trainer/model/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model:0"
  }
}
, artifact_type: name: "Model"
)]}), exec_properties={'eval_args': '{\n  "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl', 'custom_config': 'null', 'train_args': '{\n  "num_steps": 100\n}'}, execution_output_uri='pipelines/penguin-tfdv/Trainer/.system/executor_execution/4/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/Trainer/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/Trainer/.system/executor_execution/4/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.trainer.component.Trainer"
  }
  id: "Trainer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.Trainer"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
  inputs {
    key: "schema"
    value {
      channels {
        producer_node_query {
          id: "schema_importer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.schema_importer"
            }
          }
        }
        artifact_query {
          type {
            name: "Schema"
          }
        }
        output_key: "result"
      }
    }
  }
}
outputs {
  outputs {
    key: "model"
    value {
      artifact_spec {
        type {
          name: "Model"
        }
      }
    }
  }
  outputs {
    key: "model_run"
    value {
      artifact_spec {
        type {
          name: "ModelRun"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "eval_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 5\n}"
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl"
      }
    }
  }
  parameters {
    key: "train_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 100\n}"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
upstream_nodes: "schema_importer"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv"
, pipeline_run_id='2021-12-05T11:10:11.667239')
INFO:absl:Train on the 'train' split when train_args.splits is not set.
INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set.
INFO:absl:udf_utils.get_fn {'eval_args': '{\n  "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl', 'custom_config': 'null', 'train_args': '{\n  "num_steps": 100\n}'} 'run_fn'
INFO:absl:Installing 'pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpbb1l9_v7', 'pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl']
Processing ./pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl
INFO:absl:Successfully installed 'pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl'.
INFO:absl:Training model.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
Installing collected packages: tfx-user-code-Trainer
Successfully installed tfx-user-code-Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Model: "model"
INFO:absl:__________________________________________________________________________________________________
INFO:absl:Layer (type)                    Output Shape         Param #     Connected to                     
INFO:absl:==================================================================================================
INFO:absl:body_mass_g (InputLayer)        [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:culmen_depth_mm (InputLayer)    [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:culmen_length_mm (InputLayer)   [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:flipper_length_mm (InputLayer)  [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:concatenate (Concatenate)       (None, 4)            0           body_mass_g[0][0]                
INFO:absl:                                                                 culmen_depth_mm[0][0]            
INFO:absl:                                                                 culmen_length_mm[0][0]           
INFO:absl:                                                                 flipper_length_mm[0][0]          
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense (Dense)                   (None, 8)            40          concatenate[0][0]                
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_1 (Dense)                 (None, 8)            72          dense[0][0]                      
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_2 (Dense)                 (None, 3)            27          dense_1[0][0]                    
INFO:absl:==================================================================================================
INFO:absl:Total params: 139
INFO:absl:Trainable params: 139
INFO:absl:Non-trainable params: 0
INFO:absl:__________________________________________________________________________________________________
100/100 [==============================] - 1s 3ms/step - loss: 0.5752 - sparse_categorical_accuracy: 0.8165 - val_loss: 0.2294 - val_sparse_categorical_accuracy: 0.9400
2021-12-05 11:10:20.208161: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: pipelines/penguin-tfdv/Trainer/model/4/Format-Serving/assets
INFO:tensorflow:Assets written to: pipelines/penguin-tfdv/Trainer/model/4/Format-Serving/assets
INFO:absl:Training complete. Model written to pipelines/penguin-tfdv/Trainer/model/4/Format-Serving. ModelRun written to pipelines/penguin-tfdv/Trainer/model_run/4
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 4 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Trainer/model_run/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model_run:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ModelRun"
)], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Trainer/model/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Model"
)]}) for execution 4
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component Trainer is finished.
I1205 11:10:20.766410  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 11:10:20.770478  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component ExampleValidator is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.example_validator.component.ExampleValidator"
  }
  id: "ExampleValidator"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.ExampleValidator"
      }
    }
  }
}
inputs {
  inputs {
    key: "schema"
    value {
      channels {
        producer_node_query {
          id: "schema_importer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.schema_importer"
            }
          }
        }
        artifact_query {
          type {
            name: "Schema"
          }
        }
        output_key: "result"
      }
      min_count: 1
    }
  }
  inputs {
    key: "statistics"
    value {
      channels {
        producer_node_query {
          id: "StatisticsGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.StatisticsGen"
            }
          }
        }
        artifact_query {
          type {
            name: "ExampleStatistics"
          }
        }
        output_key: "statistics"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "anomalies"
    value {
      artifact_spec {
        type {
          name: "ExampleAnomalies"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "StatisticsGen"
upstream_nodes: "schema_importer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:20.793696  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 5
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=5, input_dict={'statistics': [Artifact(artifact: id: 3
type_id: 19
uri: "pipelines/penguin-tfdv/StatisticsGen/statistics/3"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:StatisticsGen:statistics:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702615406
last_update_time_since_epoch: 1638702615406
, artifact_type: id: 19
name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)], 'schema': [Artifact(artifact: id: 2
type_id: 17
uri: "schema"
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702612810
last_update_time_since_epoch: 1638702612810
, artifact_type: id: 17
name: "Schema"
)]}, output_dict=defaultdict(<class 'list'>, {'anomalies': [Artifact(artifact: uri: "pipelines/penguin-tfdv/ExampleValidator/anomalies/5"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:ExampleValidator:anomalies:0"
  }
}
, artifact_type: name: "ExampleAnomalies"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}), exec_properties={'exclude_splits': '[]'}, execution_output_uri='pipelines/penguin-tfdv/ExampleValidator/.system/executor_execution/5/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/ExampleValidator/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/ExampleValidator/.system/executor_execution/5/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.example_validator.component.ExampleValidator"
  }
  id: "ExampleValidator"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.ExampleValidator"
      }
    }
  }
}
inputs {
  inputs {
    key: "schema"
    value {
      channels {
        producer_node_query {
          id: "schema_importer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.schema_importer"
            }
          }
        }
        artifact_query {
          type {
            name: "Schema"
          }
        }
        output_key: "result"
      }
      min_count: 1
    }
  }
  inputs {
    key: "statistics"
    value {
      channels {
        producer_node_query {
          id: "StatisticsGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.StatisticsGen"
            }
          }
        }
        artifact_query {
          type {
            name: "ExampleStatistics"
          }
        }
        output_key: "statistics"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "anomalies"
    value {
      artifact_spec {
        type {
          name: "ExampleAnomalies"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "StatisticsGen"
upstream_nodes: "schema_importer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv"
, pipeline_run_id='2021-12-05T11:10:11.667239')
INFO:absl:Validating schema against the computed statistics for split train.
INFO:absl:Validation complete for split train. Anomalies written to pipelines/penguin-tfdv/ExampleValidator/anomalies/5/Split-train.
INFO:absl:Validating schema against the computed statistics for split eval.
INFO:absl:Validation complete for split eval. Anomalies written to pipelines/penguin-tfdv/ExampleValidator/anomalies/5/Split-eval.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 5 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'anomalies': [Artifact(artifact: uri: "pipelines/penguin-tfdv/ExampleValidator/anomalies/5"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:ExampleValidator:anomalies:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ExampleAnomalies"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}) for execution 5
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component ExampleValidator is finished.
INFO:absl:Component Pusher is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.pusher.component.Pusher"
  }
  id: "Pusher"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.Pusher"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
}
outputs {
  outputs {
    key: "pushed_model"
    value {
      artifact_spec {
        type {
          name: "PushedModel"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "push_destination"
    value {
      field_value {
        string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-tfdv\"\n  }\n}"
      }
    }
  }
}
upstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:20.848567  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution 6
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=6, input_dict={'model': [Artifact(artifact: id: 5
type_id: 22
uri: "pipelines/penguin-tfdv/Trainer/model/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702620774
last_update_time_since_epoch: 1638702620774
, artifact_type: id: 22
name: "Model"
)]}, output_dict=defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Pusher/pushed_model/6"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Pusher:pushed_model:0"
  }
}
, artifact_type: name: "PushedModel"
)]}), exec_properties={'push_destination': '{\n  "filesystem": {\n    "base_directory": "serving_model/penguin-tfdv"\n  }\n}', 'custom_config': 'null'}, execution_output_uri='pipelines/penguin-tfdv/Pusher/.system/executor_execution/6/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/Pusher/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/Pusher/.system/executor_execution/6/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.pusher.component.Pusher"
  }
  id: "Pusher"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.Pusher"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
}
outputs {
  outputs {
    key: "pushed_model"
    value {
      artifact_spec {
        type {
          name: "PushedModel"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "push_destination"
    value {
      field_value {
        string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-tfdv\"\n  }\n}"
      }
    }
  }
}
upstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv"
, pipeline_run_id='2021-12-05T11:10:11.667239')
WARNING:absl:Pusher is going to push the model without validation. Consider using Evaluator or InfraValidator in your pipeline.
INFO:absl:Model version: 1638702620
INFO:absl:Model written to serving path serving_model/penguin-tfdv/1638702620.
INFO:absl:Model pushed to pipelines/penguin-tfdv/Pusher/pushed_model/6.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 6 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Pusher/pushed_model/6"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Pusher:pushed_model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "PushedModel"
)]}) for execution 6
INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:20.879335  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Pusher is finished.

"INFO:absl:Component Pusher가 완료되었습니다."가 표시되어야 합니다. 파이프라인이 성공적으로 완료된 경우.

파이프라인의 출력 검사

우리는 펭귄에 대한 분류 모델을 훈련했으며 ExampleValidator 구성 요소의 입력 예제도 검증했습니다. 이전 파이프라인에서 했던 것처럼 ExampleValidator의 출력을 분석할 수 있습니다.

metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config(
    METADATA_PATH)

with Metadata(metadata_connection_config) as metadata_handler:
  ev_output = get_latest_artifacts(metadata_handler, PIPELINE_NAME,
                                   'ExampleValidator')
  anomalies_artifacts = ev_output[standard_component_specs.ANOMALIES_KEY]
INFO:absl:MetadataStore with DB connection initialized

ExampleValidator의 ExampleAnomalies도 시각화할 수 있습니다.

visualize_artifacts(anomalies_artifacts)

각 예제 분할에 대해 "Noomalies found"가 표시되어야 합니다. 이 파이프라인에서 스키마 생성에 사용된 것과 동일한 데이터를 사용했기 때문에 여기서 이상은 예상되지 않습니다. 새로운 수신 데이터로 이 파이프라인을 반복적으로 실행하면 ExampleValidator가 새 데이터와 기존 스키마 간의 불일치를 찾을 수 있어야 합니다.

이상이 발견되면 데이터를 검토하여 가정을 따르지 않는 예가 있는지 확인할 수 있습니다. StatisticsGen과 같은 다른 구성 요소의 출력이 유용할 수 있습니다. 그러나 발견된 이상은 추가 파이프라인 실행을 차단하지 않습니다.

다음 단계

당신은 더 많은 자원을 찾을 수 있습니다 https://www.tensorflow.org/tfx/tutorials을

참조하시기 바랍니다 TFX 파이프 라인은 이해 TFX에서 다양한 개념에 대해 더 배울 수 있습니다.