Ingénierie de fonctionnalités à l'aide de TFX Pipeline et de TensorFlow Transform

Restez organisé à l'aide des collections Enregistrez et classez les contenus selon vos préférences.

Transformez les données d'entrée et tracez un modèle avec un pipeline TFX.

Dans ce didacticiel basé sur un bloc-notes, nous allons créer et exécuter un pipeline TFX pour ingérer les données d'entrée brutes et les prétraiter de manière appropriée pour la formation ML. Ce portable est basé sur le pipeline de TFX nous avons construit dans la validation des données en utilisant TFX Pipeline et tensorflow Validation des données Tutoriel . Si vous ne l'avez pas encore lu, vous devriez le lire avant de continuer avec ce cahier.

Vous pouvez augmenter la qualité prédictive de vos données et/ou réduire la dimensionnalité grâce à l'ingénierie des caractéristiques. L'un des avantages de l'utilisation de TFX est que vous n'écrirez votre code de transformation qu'une seule fois, et les transformations résultantes seront cohérentes entre l'entraînement et la diffusion afin d'éviter le décalage entre l'entraînement et la diffusion.

Nous allons ajouter un Transform composant au pipeline. La mise en œuvre est le composant transformation à l' aide de la tf.transform bibliothèque.

S'il vous plaît voir Comprendre TFX Pipelines pour en savoir plus sur les différents concepts TFX.

D'installation

Nous devons d'abord installer le package Python TFX et télécharger le jeu de données que nous utiliserons pour notre modèle.

Pip de mise à niveau

Pour éviter de mettre à niveau Pip dans un système lors de l'exécution locale, assurez-vous que nous exécutons dans Colab. Les systèmes locaux peuvent bien sûr être mis à niveau séparément.

try:
  import colab
  !pip install --upgrade pip
except:
  pass

Installer TFX

pip install -U tfx

As-tu redémarré le runtime ?

Si vous utilisez Google Colab, la première fois que vous exécutez la cellule ci-dessus, vous devez redémarrer le runtime en cliquant au-dessus du bouton "RESTART RUNTIME" ou en utilisant le menu "Runtime> Restart runtime ...". Cela est dû à la façon dont Colab charge les packages.

Vérifiez les versions TensorFlow et TFX.

import tensorflow as tf
print('TensorFlow version: {}'.format(tf.__version__))
from tfx import v1 as tfx
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.6.2
TFX version: 1.4.0

Configurer des variables

Certaines variables sont utilisées pour définir un pipeline. Vous pouvez personnaliser ces variables comme vous le souhaitez. Par défaut, toutes les sorties du pipeline seront générées sous le répertoire actuel.

import os

PIPELINE_NAME = "penguin-transform"

# Output directory to store artifacts generated from the pipeline.
PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME)
# Path to a SQLite DB file to use as an MLMD storage.
METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db')
# Output directory where created models from the pipeline will be exported.
SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME)

from absl import logging
logging.set_verbosity(logging.INFO)  # Set default logging level.

Préparer des exemples de données

Nous allons télécharger l'exemple de jeu de données à utiliser dans notre pipeline TFX. L'ensemble de données que nous utilisons est dataset Palmer Penguins .

Cependant, contrairement à des tutoriels précédents qui ont utilisé un ensemble de données déjà prétraité, nous utiliserons l'ensemble des données brutes Palmer Penguins.

Étant donné que le composant TFX ExampleGen lit les entrées d'un répertoire, nous devons créer un répertoire et y copier l'ensemble de données.

import urllib.request
import tempfile

DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data')  # Create a temporary directory.
_data_path = 'https://storage.googleapis.com/download.tensorflow.org/data/palmer_penguins/penguins_size.csv'
_data_filepath = os.path.join(DATA_ROOT, "data.csv")
urllib.request.urlretrieve(_data_path, _data_filepath)
('/tmp/tfx-dataacmxfq9f/data.csv', <http.client.HTTPMessage at 0x7f5b0ab1bf10>)

Jetez un coup d'œil à quoi ressemblent les données brutes.

head {_data_filepath}
species,island,culmen_length_mm,culmen_depth_mm,flipper_length_mm,body_mass_g,sex
Adelie,Torgersen,39.1,18.7,181,3750,MALE
Adelie,Torgersen,39.5,17.4,186,3800,FEMALE
Adelie,Torgersen,40.3,18,195,3250,FEMALE
Adelie,Torgersen,NA,NA,NA,NA,NA
Adelie,Torgersen,36.7,19.3,193,3450,FEMALE
Adelie,Torgersen,39.3,20.6,190,3650,MALE
Adelie,Torgersen,38.9,17.8,181,3625,FEMALE
Adelie,Torgersen,39.2,19.6,195,4675,MALE
Adelie,Torgersen,34.1,18.1,193,3475,NA

Il y a quelques entrées avec les valeurs manquantes qui sont représentées par NA . Nous allons simplement supprimer ces entrées dans ce tutoriel.

sed -i '/\bNA\b/d' {_data_filepath}
head {_data_filepath}
species,island,culmen_length_mm,culmen_depth_mm,flipper_length_mm,body_mass_g,sex
Adelie,Torgersen,39.1,18.7,181,3750,MALE
Adelie,Torgersen,39.5,17.4,186,3800,FEMALE
Adelie,Torgersen,40.3,18,195,3250,FEMALE
Adelie,Torgersen,36.7,19.3,193,3450,FEMALE
Adelie,Torgersen,39.3,20.6,190,3650,MALE
Adelie,Torgersen,38.9,17.8,181,3625,FEMALE
Adelie,Torgersen,39.2,19.6,195,4675,MALE
Adelie,Torgersen,41.1,17.6,182,3200,FEMALE
Adelie,Torgersen,38.6,21.2,191,3800,MALE

Vous devriez être capable de voir sept caractéristiques qui décrivent les pingouins. Nous utiliserons le même ensemble de fonctionnalités que les didacticiels précédents - 'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g' - et prédirons l'"espèce" d'un pingouin.

La seule différence sera que les données d'entrée ne sont pas prétraitées. Notez que nous n'utiliserons pas d'autres fonctionnalités comme « île » ou « sexe » dans ce didacticiel.

Préparer un fichier de schéma

Comme décrit dans la validation des données en utilisant TFX Pipeline et tensorflow Validation des données didacticiel , nous avons besoin d' un fichier de schéma pour l'ensemble de données. Étant donné que le jeu de données est différent du didacticiel précédent, nous devons le générer à nouveau. Dans ce didacticiel, nous sauterons ces étapes et utiliserons simplement un fichier de schéma préparé.

import shutil

SCHEMA_PATH = 'schema'

_schema_uri = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/schema/raw/schema.pbtxt'
_schema_filename = 'schema.pbtxt'
_schema_filepath = os.path.join(SCHEMA_PATH, _schema_filename)

os.makedirs(SCHEMA_PATH, exist_ok=True)
urllib.request.urlretrieve(_schema_uri, _schema_filepath)
('schema/schema.pbtxt', <http.client.HTTPMessage at 0x7f5b0ab20f50>)

Ce fichier de schéma a été créé avec le même pipeline que dans le didacticiel précédent sans aucune modification manuelle.

Créer un pipeline

Les pipelines TFX sont définis à l'aide d'API Python. Nous allons ajouter Transform le composant à la conduite que nous avons créé dans le tutoriel de validation de données .

Un composant de transformation nécessite des données d' entrée provenant d' un ExampleGen composant et un schéma d'un SchemaGen composant, et produit une « transformation graphique ». La sortie sera utilisée dans un Trainer composant. Transform peut éventuellement produire en plus des "données transformées", qui sont les données matérialisées après transformation. Cependant, nous allons transformer les données lors de la formation dans ce tutoriel sans matérialisation des données transformées intermédiaires.

Une chose à noter est que nous devons définir une fonction Python, preprocessing_fn pour décrire comment les données d'entrée doivent être transformées. Ceci est similaire à un composant Trainer qui nécessite également un code utilisateur pour la définition du modèle.

Écrire le code de prétraitement et d'entraînement

Nous devons définir deux fonctions Python. Un pour Transform et un pour Trainer.

preprocessing_fn

Le composant Transformer trouvera une fonction nommée preprocessing_fn dans le fichier module donné que nous avons fait pour Trainer composant. Vous pouvez également spécifier une fonction spécifique à l' aide du preprocessing_fn paramètre du composant Transformer.

Dans cet exemple, nous allons effectuer deux types de transformation. Pour les fonctions numériques continues comme culmen_length_mm et body_mass_g , nous allons normaliser ces valeurs en utilisant la tft.scale_to_z_score fonction. Pour la fonction d'étiquette, nous devons convertir les étiquettes de chaîne en valeurs d'index numériques. Nous utiliserons tf.lookup.StaticHashTable pour la conversion.

Pour identifier les champs transformés facilement, nous ajoutons un _xf suffixe aux noms de fonctions transformées.

run_fn

Le modèle lui-même est presque le même que dans les didacticiels précédents, mais cette fois, nous allons transformer les données d'entrée à l'aide du graphique de transformation du composant Transform.

Une autre différence importante par rapport au didacticiel précédent est que nous exportons maintenant un modèle pour le service qui inclut non seulement le graphique de calcul du modèle, mais également le graphique de transformation pour le prétraitement, qui est généré dans le composant Transform. Nous devons définir une fonction distincte qui sera utilisée pour répondre aux demandes entrantes. Vous pouvez voir que la même fonction _apply_preprocessing a été utilisé aussi bien pour des données de formation et la demande de service.

_module_file = 'penguin_utils.py'
%%writefile {_module_file}


from typing import List, Text
from absl import logging
import tensorflow as tf
from tensorflow import keras
from tensorflow_metadata.proto.v0 import schema_pb2
import tensorflow_transform as tft
from tensorflow_transform.tf_metadata import schema_utils

from tfx import v1 as tfx
from tfx_bsl.public import tfxio

# Specify features that we will use.
_FEATURE_KEYS = [
    'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g'
]
_LABEL_KEY = 'species'

_TRAIN_BATCH_SIZE = 20
_EVAL_BATCH_SIZE = 10


# NEW: TFX Transform will call this function.
def preprocessing_fn(inputs):
  """tf.transform's callback function for preprocessing inputs.

  Args:
    inputs: map from feature keys to raw not-yet-transformed features.

  Returns:
    Map from string feature key to transformed feature.
  """
  outputs = {}

  # Uses features defined in _FEATURE_KEYS only.
  for key in _FEATURE_KEYS:
    # tft.scale_to_z_score computes the mean and variance of the given feature
    # and scales the output based on the result.
    outputs[key] = tft.scale_to_z_score(inputs[key])

  # For the label column we provide the mapping from string to index.
  # We could instead use `tft.compute_and_apply_vocabulary()` in order to
  # compute the vocabulary dynamically and perform a lookup.
  # Since in this example there are only 3 possible values, we use a hard-coded
  # table for simplicity.
  table_keys = ['Adelie', 'Chinstrap', 'Gentoo']
  initializer = tf.lookup.KeyValueTensorInitializer(
      keys=table_keys,
      values=tf.cast(tf.range(len(table_keys)), tf.int64),
      key_dtype=tf.string,
      value_dtype=tf.int64)
  table = tf.lookup.StaticHashTable(initializer, default_value=-1)
  outputs[_LABEL_KEY] = table.lookup(inputs[_LABEL_KEY])

  return outputs


# NEW: This function will apply the same transform operation to training data
#      and serving requests.
def _apply_preprocessing(raw_features, tft_layer):
  transformed_features = tft_layer(raw_features)
  if _LABEL_KEY in raw_features:
    transformed_label = transformed_features.pop(_LABEL_KEY)
    return transformed_features, transformed_label
  else:
    return transformed_features, None


# NEW: This function will create a handler function which gets a serialized
#      tf.example, preprocess and run an inference with it.
def _get_serve_tf_examples_fn(model, tf_transform_output):
  # We must save the tft_layer to the model to ensure its assets are kept and
  # tracked.
  model.tft_layer = tf_transform_output.transform_features_layer()

  @tf.function(input_signature=[
      tf.TensorSpec(shape=[None], dtype=tf.string, name='examples')
  ])
  def serve_tf_examples_fn(serialized_tf_examples):
    # Expected input is a string which is serialized tf.Example format.
    feature_spec = tf_transform_output.raw_feature_spec()
    # Because input schema includes unnecessary fields like 'species' and
    # 'island', we filter feature_spec to include required keys only.
    required_feature_spec = {
        k: v for k, v in feature_spec.items() if k in _FEATURE_KEYS
    }
    parsed_features = tf.io.parse_example(serialized_tf_examples,
                                          required_feature_spec)

    # Preprocess parsed input with transform operation defined in
    # preprocessing_fn().
    transformed_features, _ = _apply_preprocessing(parsed_features,
                                                   model.tft_layer)
    # Run inference with ML model.
    return model(transformed_features)

  return serve_tf_examples_fn


def _input_fn(file_pattern: List[Text],
              data_accessor: tfx.components.DataAccessor,
              tf_transform_output: tft.TFTransformOutput,
              batch_size: int = 200) -> tf.data.Dataset:
  """Generates features and label for tuning/training.

  Args:
    file_pattern: List of paths or patterns of input tfrecord files.
    data_accessor: DataAccessor for converting input to RecordBatch.
    tf_transform_output: A TFTransformOutput.
    batch_size: representing the number of consecutive elements of returned
      dataset to combine in a single batch

  Returns:
    A dataset that contains (features, indices) tuple where features is a
      dictionary of Tensors, and indices is a single Tensor of label indices.
  """
  dataset = data_accessor.tf_dataset_factory(
      file_pattern,
      tfxio.TensorFlowDatasetOptions(batch_size=batch_size),
      schema=tf_transform_output.raw_metadata.schema)

  transform_layer = tf_transform_output.transform_features_layer()
  def apply_transform(raw_features):
    return _apply_preprocessing(raw_features, transform_layer)

  return dataset.map(apply_transform).repeat()


def _build_keras_model() -> tf.keras.Model:
  """Creates a DNN Keras model for classifying penguin data.

  Returns:
    A Keras Model.
  """
  # The model below is built with Functional API, please refer to
  # https://www.tensorflow.org/guide/keras/overview for all API options.
  inputs = [
      keras.layers.Input(shape=(1,), name=key)
      for key in _FEATURE_KEYS
  ]
  d = keras.layers.concatenate(inputs)
  for _ in range(2):
    d = keras.layers.Dense(8, activation='relu')(d)
  outputs = keras.layers.Dense(3)(d)

  model = keras.Model(inputs=inputs, outputs=outputs)
  model.compile(
      optimizer=keras.optimizers.Adam(1e-2),
      loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
      metrics=[keras.metrics.SparseCategoricalAccuracy()])

  model.summary(print_fn=logging.info)
  return model


# TFX Trainer will call this function.
def run_fn(fn_args: tfx.components.FnArgs):
  """Train the model based on given args.

  Args:
    fn_args: Holds args used to train the model as name/value pairs.
  """
  tf_transform_output = tft.TFTransformOutput(fn_args.transform_output)

  train_dataset = _input_fn(
      fn_args.train_files,
      fn_args.data_accessor,
      tf_transform_output,
      batch_size=_TRAIN_BATCH_SIZE)
  eval_dataset = _input_fn(
      fn_args.eval_files,
      fn_args.data_accessor,
      tf_transform_output,
      batch_size=_EVAL_BATCH_SIZE)

  model = _build_keras_model()
  model.fit(
      train_dataset,
      steps_per_epoch=fn_args.train_steps,
      validation_data=eval_dataset,
      validation_steps=fn_args.eval_steps)

  # NEW: Save a computation graph including transform layer.
  signatures = {
      'serving_default': _get_serve_tf_examples_fn(model, tf_transform_output),
  }
  model.save(fn_args.serving_model_dir, save_format='tf', signatures=signatures)
Writing penguin_utils.py

Vous avez maintenant terminé toutes les étapes de préparation pour créer un pipeline TFX.

Écrire une définition de pipeline

Nous définissons une fonction pour créer un pipeline TFX. Un Pipeline objet représente un pipeline de TFX, qui peut être exécuté en utilisant l' un des systèmes d'orchestration de pipeline de supports de TFX.

def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,
                     schema_path: str, module_file: str, serving_model_dir: str,
                     metadata_path: str) -> tfx.dsl.Pipeline:
  """Implements the penguin pipeline with TFX."""
  # Brings data into the pipeline or otherwise joins/converts training data.
  example_gen = tfx.components.CsvExampleGen(input_base=data_root)

  # Computes statistics over data for visualization and example validation.
  statistics_gen = tfx.components.StatisticsGen(
      examples=example_gen.outputs['examples'])

  # Import the schema.
  schema_importer = tfx.dsl.Importer(
      source_uri=schema_path,
      artifact_type=tfx.types.standard_artifacts.Schema).with_id(
          'schema_importer')

  # Performs anomaly detection based on statistics and data schema.
  example_validator = tfx.components.ExampleValidator(
      statistics=statistics_gen.outputs['statistics'],
      schema=schema_importer.outputs['result'])

  # NEW: Transforms input data using preprocessing_fn in the 'module_file'.
  transform = tfx.components.Transform(
      examples=example_gen.outputs['examples'],
      schema=schema_importer.outputs['result'],
      materialize=False,
      module_file=module_file)

  # Uses user-provided Python function that trains a model.
  trainer = tfx.components.Trainer(
      module_file=module_file,
      examples=example_gen.outputs['examples'],

      # NEW: Pass transform_graph to the trainer.
      transform_graph=transform.outputs['transform_graph'],

      train_args=tfx.proto.TrainArgs(num_steps=100),
      eval_args=tfx.proto.EvalArgs(num_steps=5))

  # Pushes the model to a filesystem destination.
  pusher = tfx.components.Pusher(
      model=trainer.outputs['model'],
      push_destination=tfx.proto.PushDestination(
          filesystem=tfx.proto.PushDestination.Filesystem(
              base_directory=serving_model_dir)))

  components = [
      example_gen,
      statistics_gen,
      schema_importer,
      example_validator,

      transform,  # NEW: Transform component was added to the pipeline.

      trainer,
      pusher,
  ]

  return tfx.dsl.Pipeline(
      pipeline_name=pipeline_name,
      pipeline_root=pipeline_root,
      metadata_connection_config=tfx.orchestration.metadata
      .sqlite_metadata_connection_config(metadata_path),
      components=components)

Exécuter le pipeline

Nous utiliserons LocalDagRunner comme dans le tutoriel précédent.

tfx.orchestration.LocalDagRunner().run(
  _create_pipeline(
      pipeline_name=PIPELINE_NAME,
      pipeline_root=PIPELINE_ROOT,
      data_root=DATA_ROOT,
      schema_path=SCHEMA_PATH,
      module_file=_module_file,
      serving_model_dir=SERVING_MODEL_DIR,
      metadata_path=METADATA_PATH))
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_utils.py' (including modules: ['penguin_utils']).
INFO:absl:User module package has hash fingerprint version a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmp_rl2wpg3/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmps7emqvj6', '--dist-dir', '/tmp/tmpnvanprdd']
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
  setuptools.SetuptoolsDeprecationWarning,
listing git files failed - pretending there aren't any
INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'; target user module is 'penguin_utils'.
INFO:absl:Full user module path is 'penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_utils.py' (including modules: ['penguin_utils']).
INFO:absl:User module package has hash fingerprint version a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmpi9sy085o/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmpugc_ecw_', '--dist-dir', '/tmp/tmpr1xz5bg6']
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying penguin_utils.py -> build/lib
installing to /tmp/tmps7emqvj6
running install
running install_lib
copying build/lib/penguin_utils.py -> /tmp/tmps7emqvj6
running install_egg_info
running egg_info
creating tfx_user_code_Transform.egg-info
writing tfx_user_code_Transform.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Transform.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Transform.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
Copying tfx_user_code_Transform.egg-info to /tmp/tmps7emqvj6/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3.7.egg-info
running install_scripts
creating /tmp/tmps7emqvj6/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/WHEEL
creating '/tmp/tmpnvanprdd/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl' and adding '/tmp/tmps7emqvj6' to it
adding 'penguin_utils.py'
adding 'tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/METADATA'
adding 'tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/WHEEL'
adding 'tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/top_level.txt'
adding 'tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/RECORD'
removing /tmp/tmps7emqvj6
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
  setuptools.SetuptoolsDeprecationWarning,
listing git files failed - pretending there aren't any
INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'; target user module is 'penguin_utils'.
INFO:absl:Full user module path is 'penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'
INFO:absl:Using deployment config:
 executor_specs {
  key: "CsvExampleGen"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor"
      }
    }
  }
}
executor_specs {
  key: "ExampleValidator"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.example_validator.executor.Executor"
    }
  }
}
executor_specs {
  key: "Pusher"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.pusher.executor.Executor"
    }
  }
}
executor_specs {
  key: "StatisticsGen"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.statistics_gen.executor.Executor"
      }
    }
  }
}
executor_specs {
  key: "Trainer"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.trainer.executor.GenericExecutor"
    }
  }
}
executor_specs {
  key: "Transform"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.transform.executor.Executor"
      }
    }
  }
}
custom_driver_specs {
  key: "CsvExampleGen"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.example_gen.driver.FileBasedDriver"
    }
  }
}
metadata_connection_config {
  sqlite {
    filename_uri: "metadata/penguin-transform/metadata.db"
    connection_mode: READWRITE_OPENCREATE
  }
}

INFO:absl:Using connection config:
 sqlite {
  filename_uri: "metadata/penguin-transform/metadata.db"
  connection_mode: READWRITE_OPENCREATE
}

INFO:absl:Component CsvExampleGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-transform"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:21:51.187624"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-transform.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-dataacmxfq9f"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "StatisticsGen"
downstream_nodes: "Trainer"
downstream_nodes: "Transform"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying penguin_utils.py -> build/lib
installing to /tmp/tmpugc_ecw_
running install
running install_lib
copying build/lib/penguin_utils.py -> /tmp/tmpugc_ecw_
running install_egg_info
running egg_info
creating tfx_user_code_Trainer.egg-info
writing tfx_user_code_Trainer.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
Copying tfx_user_code_Trainer.egg-info to /tmp/tmpugc_ecw_/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3.7.egg-info
running install_scripts
creating /tmp/tmpugc_ecw_/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/WHEEL
creating '/tmp/tmpr1xz5bg6/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl' and adding '/tmp/tmpugc_ecw_' to it
adding 'penguin_utils.py'
adding 'tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/METADATA'
adding 'tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/WHEEL'
adding 'tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/top_level.txt'
adding 'tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/RECORD'
removing /tmp/tmpugc_ecw_
WARNING: Logging before InitGoogleLogging() is written to STDERR
I1205 10:21:51.351922 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 10:21:52.158721 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 10:21:52.173334 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 10:21:52.180279 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:select span and version = (0, None)
INFO:absl:latest span and version = (0, None)
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 1
I1205 10:21:52.194584 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-transform/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:13161,xor_checksum:1638699709,sum_checksum:1638699709"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}), exec_properties={'output_config': '{\n  "split_config": {\n    "splits": [\n      {\n        "hash_buckets": 2,\n        "name": "train"\n      },\n      {\n        "hash_buckets": 1,\n        "name": "eval"\n      }\n    ]\n  }\n}', 'input_config': '{\n  "splits": [\n    {\n      "name": "single_split",\n      "pattern": "*"\n    }\n  ]\n}', 'output_file_format': 5, 'output_data_format': 6, 'input_base': '/tmp/tfx-dataacmxfq9f', 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:13161,xor_checksum:1638699709,sum_checksum:1638699709'}, execution_output_uri='pipelines/penguin-transform/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-transform/CsvExampleGen/.system/stateful_working_dir/2021-12-05T10:21:51.187624', tmp_dir='pipelines/penguin-transform/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-transform"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:21:51.187624"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-transform.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-dataacmxfq9f"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "StatisticsGen"
downstream_nodes: "Trainer"
downstream_nodes: "Transform"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-transform"
, pipeline_run_id='2021-12-05T10:21:51.187624')
INFO:absl:Generating examples.
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
INFO:absl:Processing input csv data /tmp/tfx-dataacmxfq9f/* to TFExample.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
INFO:absl:Examples generated.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 1 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-transform/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:13161,xor_checksum:1638699709,sum_checksum:1638699709"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}) for execution 1
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component CsvExampleGen is finished.
INFO:absl:Component schema_importer is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.dsl.components.common.importer.Importer"
  }
  id: "schema_importer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-transform"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:21:51.187624"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-transform.schema_importer"
      }
    }
  }
}
outputs {
  outputs {
    key: "result"
    value {
      artifact_spec {
        type {
          name: "Schema"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "artifact_uri"
    value {
      field_value {
        string_value: "schema"
      }
    }
  }
  parameters {
    key: "reimport"
    value {
      field_value {
        int_value: 0
      }
    }
  }
}
downstream_nodes: "ExampleValidator"
downstream_nodes: "Transform"
execution_options {
  caching_options {
  }
}

INFO:absl:Running as an importer node.
INFO:absl:MetadataStore with DB connection initialized
I1205 10:21:53.330585 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Processing source uri: schema, properties: {}, custom_properties: {}
I1205 10:21:53.340232 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component schema_importer is finished.
INFO:absl:Component StatisticsGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.statistics_gen.component.StatisticsGen"
  }
  id: "StatisticsGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-transform"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:21:51.187624"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-transform.StatisticsGen"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "statistics"
    value {
      artifact_spec {
        type {
          name: "ExampleStatistics"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "ExampleValidator"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 10:21:53.360662 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 3
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-transform/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:13161,xor_checksum:1638699709,sum_checksum:1638699709"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638699713316
last_update_time_since_epoch: 1638699713316
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}, output_dict=defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-transform/StatisticsGen/statistics/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:StatisticsGen:statistics:0"
  }
}
, artifact_type: name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}), exec_properties={'exclude_splits': '[]'}, execution_output_uri='pipelines/penguin-transform/StatisticsGen/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-transform/StatisticsGen/.system/stateful_working_dir/2021-12-05T10:21:51.187624', tmp_dir='pipelines/penguin-transform/StatisticsGen/.system/executor_execution/3/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.statistics_gen.component.StatisticsGen"
  }
  id: "StatisticsGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-transform"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:21:51.187624"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-transform.StatisticsGen"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "statistics"
    value {
      artifact_spec {
        type {
          name: "ExampleStatistics"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "ExampleValidator"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-transform"
, pipeline_run_id='2021-12-05T10:21:51.187624')
INFO:absl:Generating statistics for split train.
INFO:absl:Statistics for split train written to pipelines/penguin-transform/StatisticsGen/statistics/3/Split-train.
INFO:absl:Generating statistics for split eval.
INFO:absl:Statistics for split eval written to pipelines/penguin-transform/StatisticsGen/statistics/3/Split-eval.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 3 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-transform/StatisticsGen/statistics/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:StatisticsGen:statistics:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}) for execution 3
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component StatisticsGen is finished.
INFO:absl:Component Transform is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.transform.component.Transform"
  }
  id: "Transform"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-transform"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:21:51.187624"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-transform.Transform"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
  inputs {
    key: "schema"
    value {
      channels {
        producer_node_query {
          id: "schema_importer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.schema_importer"
            }
          }
        }
        artifact_query {
          type {
            name: "Schema"
          }
        }
        output_key: "result"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "post_transform_anomalies"
    value {
      artifact_spec {
        type {
          name: "ExampleAnomalies"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
  outputs {
    key: "post_transform_schema"
    value {
      artifact_spec {
        type {
          name: "Schema"
        }
      }
    }
  }
  outputs {
    key: "post_transform_stats"
    value {
      artifact_spec {
        type {
          name: "ExampleStatistics"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
  outputs {
    key: "pre_transform_schema"
    value {
      artifact_spec {
        type {
          name: "Schema"
        }
      }
    }
  }
  outputs {
    key: "pre_transform_stats"
    value {
      artifact_spec {
        type {
          name: "ExampleStatistics"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
  outputs {
    key: "transform_graph"
    value {
      artifact_spec {
        type {
          name: "TransformGraph"
        }
      }
    }
  }
  outputs {
    key: "updated_analyzer_cache"
    value {
      artifact_spec {
        type {
          name: "TransformCache"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "disable_statistics"
    value {
      field_value {
        int_value: 0
      }
    }
  }
  parameters {
    key: "force_tf_compat_v1"
    value {
      field_value {
        int_value: 0
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
upstream_nodes: "schema_importer"
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 10:21:56.029392 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 4
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=4, input_dict={'schema': [Artifact(artifact: id: 2
type_id: 17
uri: "schema"
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638699713343
last_update_time_since_epoch: 1638699713343
, artifact_type: id: 17
name: "Schema"
)], 'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-transform/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:13161,xor_checksum:1638699709,sum_checksum:1638699709"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638699713316
last_update_time_since_epoch: 1638699713316
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}, output_dict=defaultdict(<class 'list'>, {'updated_analyzer_cache': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/updated_analyzer_cache/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:updated_analyzer_cache:0"
  }
}
, artifact_type: name: "TransformCache"
)], 'post_transform_stats': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/post_transform_stats/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:post_transform_stats:0"
  }
}
, artifact_type: name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)], 'pre_transform_stats': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/pre_transform_stats/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:pre_transform_stats:0"
  }
}
, artifact_type: name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)], 'pre_transform_schema': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/pre_transform_schema/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:pre_transform_schema:0"
  }
}
, artifact_type: name: "Schema"
)], 'post_transform_anomalies': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/post_transform_anomalies/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:post_transform_anomalies:0"
  }
}
, artifact_type: name: "ExampleAnomalies"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)], 'transform_graph': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/transform_graph/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:transform_graph:0"
  }
}
, artifact_type: name: "TransformGraph"
)], 'post_transform_schema': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/post_transform_schema/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:post_transform_schema:0"
  }
}
, artifact_type: name: "Schema"
)]}), exec_properties={'disable_statistics': 0, 'module_path': 'penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl', 'custom_config': 'null', 'force_tf_compat_v1': 0}, execution_output_uri='pipelines/penguin-transform/Transform/.system/executor_execution/4/executor_output.pb', stateful_working_dir='pipelines/penguin-transform/Transform/.system/stateful_working_dir/2021-12-05T10:21:51.187624', tmp_dir='pipelines/penguin-transform/Transform/.system/executor_execution/4/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.transform.component.Transform"
  }
  id: "Transform"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-transform"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:21:51.187624"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-transform.Transform"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
  inputs {
    key: "schema"
    value {
      channels {
        producer_node_query {
          id: "schema_importer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.schema_importer"
            }
          }
        }
        artifact_query {
          type {
            name: "Schema"
          }
        }
        output_key: "result"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "post_transform_anomalies"
    value {
      artifact_spec {
        type {
          name: "ExampleAnomalies"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
  outputs {
    key: "post_transform_schema"
    value {
      artifact_spec {
        type {
          name: "Schema"
        }
      }
    }
  }
  outputs {
    key: "post_transform_stats"
    value {
      artifact_spec {
        type {
          name: "ExampleStatistics"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
  outputs {
    key: "pre_transform_schema"
    value {
      artifact_spec {
        type {
          name: "Schema"
        }
      }
    }
  }
  outputs {
    key: "pre_transform_stats"
    value {
      artifact_spec {
        type {
          name: "ExampleStatistics"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
  outputs {
    key: "transform_graph"
    value {
      artifact_spec {
        type {
          name: "TransformGraph"
        }
      }
    }
  }
  outputs {
    key: "updated_analyzer_cache"
    value {
      artifact_spec {
        type {
          name: "TransformCache"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "disable_statistics"
    value {
      field_value {
        int_value: 0
      }
    }
  }
  parameters {
    key: "force_tf_compat_v1"
    value {
      field_value {
        int_value: 0
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
upstream_nodes: "schema_importer"
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-transform"
, pipeline_run_id='2021-12-05T10:21:51.187624')
INFO:absl:Analyze the 'train' split and transform all splits when splits_config is not set.
INFO:absl:udf_utils.get_fn {'module_file': None, 'module_path': 'penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl', 'preprocessing_fn': None} 'preprocessing_fn'
INFO:absl:Installing 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmp3elppure', 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl']
Processing ./pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl
INFO:absl:Successfully installed 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'.
INFO:absl:udf_utils.get_fn {'module_file': None, 'module_path': 'penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl', 'stats_options_updater_fn': None} 'stats_options_updater_fn'
INFO:absl:Installing 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpctb52fyz', 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl']
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9
Processing ./pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl
INFO:absl:Successfully installed 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'.
INFO:absl:Installing 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpgv9zk7st', 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl']
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9
Processing ./pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl
INFO:absl:Successfully installed 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature island has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature sex has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:289: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use ref() instead.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:289: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use ref() instead.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature island has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature sex has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature island has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature sex has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature island has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature sex has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature island has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature sex has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature island has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature sex has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType], int] instead.
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: key_value_init/LookupTableImportV2
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: key_value_init/LookupTableImportV2
WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType], int] instead.
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: key_value_init/LookupTableImportV2
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: key_value_init/LookupTableImportV2
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature island has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature sex has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature island has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature sex has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
2021-12-05 10:22:06.547139: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: pipelines/penguin-transform/Transform/transform_graph/4/.temp_path/tftransform_tmp/167780659a644435abe6c969ed4771de/assets
INFO:tensorflow:Assets written to: pipelines/penguin-transform/Transform/transform_graph/4/.temp_path/tftransform_tmp/167780659a644435abe6c969ed4771de/assets
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: key_value_init/LookupTableImportV2
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:tensorflow:Assets written to: pipelines/penguin-transform/Transform/transform_graph/4/.temp_path/tftransform_tmp/cbe53dc813ec4d51a99f25099bd3736e/assets
INFO:tensorflow:Assets written to: pipelines/penguin-transform/Transform/transform_graph/4/.temp_path/tftransform_tmp/cbe53dc813ec4d51a99f25099bd3736e/assets
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: key_value_init/LookupTableImportV2
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 4 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'updated_analyzer_cache': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/updated_analyzer_cache/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:updated_analyzer_cache:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "TransformCache"
)], 'post_transform_stats': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/post_transform_stats/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:post_transform_stats:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)], 'pre_transform_stats': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/pre_transform_stats/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:pre_transform_stats:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)], 'pre_transform_schema': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/pre_transform_schema/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:pre_transform_schema:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Schema"
)], 'post_transform_anomalies': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/post_transform_anomalies/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:post_transform_anomalies:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ExampleAnomalies"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)], 'transform_graph': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/transform_graph/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:transform_graph:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "TransformGraph"
)], 'post_transform_schema': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/post_transform_schema/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:post_transform_schema:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Schema"
)]}) for execution 4
INFO:absl:MetadataStore with DB connection initialized
I1205 10:22:11.698540 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 10:22:11.707963 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Transform is finished.
INFO:absl:Component ExampleValidator is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.example_validator.component.ExampleValidator"
  }
  id: "ExampleValidator"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-transform"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:21:51.187624"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-transform.ExampleValidator"
      }
    }
  }
}
inputs {
  inputs {
    key: "schema"
    value {
      channels {
        producer_node_query {
          id: "schema_importer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.schema_importer"
            }
          }
        }
        artifact_query {
          type {
            name: "Schema"
          }
        }
        output_key: "result"
      }
      min_count: 1
    }
  }
  inputs {
    key: "statistics"
    value {
      channels {
        producer_node_query {
          id: "StatisticsGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.StatisticsGen"
            }
          }
        }
        artifact_query {
          type {
            name: "ExampleStatistics"
          }
        }
        output_key: "statistics"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "anomalies"
    value {
      artifact_spec {
        type {
          name: "ExampleAnomalies"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "StatisticsGen"
upstream_nodes: "schema_importer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 10:22:11.732254 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 5
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=5, input_dict={'schema': [Artifact(artifact: id: 2
type_id: 17
uri: "schema"
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638699713343
last_update_time_since_epoch: 1638699713343
, artifact_type: id: 17
name: "Schema"
)], 'statistics': [Artifact(artifact: id: 3
type_id: 19
uri: "pipelines/penguin-transform/StatisticsGen/statistics/3"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:StatisticsGen:statistics:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638699716011
last_update_time_since_epoch: 1638699716011
, artifact_type: id: 19
name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}, output_dict=defaultdict(<class 'list'>, {'anomalies': [Artifact(artifact: uri: "pipelines/penguin-transform/ExampleValidator/anomalies/5"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:ExampleValidator:anomalies:0"
  }
}
, artifact_type: name: "ExampleAnomalies"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}), exec_properties={'exclude_splits': '[]'}, execution_output_uri='pipelines/penguin-transform/ExampleValidator/.system/executor_execution/5/executor_output.pb', stateful_working_dir='pipelines/penguin-transform/ExampleValidator/.system/stateful_working_dir/2021-12-05T10:21:51.187624', tmp_dir='pipelines/penguin-transform/ExampleValidator/.system/executor_execution/5/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.example_validator.component.ExampleValidator"
  }
  id: "ExampleValidator"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-transform"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:21:51.187624"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-transform.ExampleValidator"
      }
    }
  }
}
inputs {
  inputs {
    key: "schema"
    value {
      channels {
        producer_node_query {
          id: "schema_importer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.schema_importer"
            }
          }
        }
        artifact_query {
          type {
            name: "Schema"
          }
        }
        output_key: "result"
      }
      min_count: 1
    }
  }
  inputs {
    key: "statistics"
    value {
      channels {
        producer_node_query {
          id: "StatisticsGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.StatisticsGen"
            }
          }
        }
        artifact_query {
          type {
            name: "ExampleStatistics"
          }
        }
        output_key: "statistics"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "anomalies"
    value {
      artifact_spec {
        type {
          name: "ExampleAnomalies"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "StatisticsGen"
upstream_nodes: "schema_importer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-transform"
, pipeline_run_id='2021-12-05T10:21:51.187624')
INFO:absl:Validating schema against the computed statistics for split train.
INFO:absl:Validation complete for split train. Anomalies written to pipelines/penguin-transform/ExampleValidator/anomalies/5/Split-train.
INFO:absl:Validating schema against the computed statistics for split eval.
INFO:absl:Validation complete for split eval. Anomalies written to pipelines/penguin-transform/ExampleValidator/anomalies/5/Split-eval.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 5 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'anomalies': [Artifact(artifact: uri: "pipelines/penguin-transform/ExampleValidator/anomalies/5"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:ExampleValidator:anomalies:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ExampleAnomalies"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}) for execution 5
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component ExampleValidator is finished.
INFO:absl:Component Trainer is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.trainer.component.Trainer"
  }
  id: "Trainer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-transform"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:21:51.187624"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-transform.Trainer"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
  inputs {
    key: "transform_graph"
    value {
      channels {
        producer_node_query {
          id: "Transform"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.Transform"
            }
          }
        }
        artifact_query {
          type {
            name: "TransformGraph"
          }
        }
        output_key: "transform_graph"
      }
    }
  }
}
outputs {
  outputs {
    key: "model"
    value {
      artifact_spec {
        type {
          name: "Model"
        }
      }
    }
  }
  outputs {
    key: "model_run"
    value {
      artifact_spec {
        type {
          name: "ModelRun"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "eval_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 5\n}"
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl"
      }
    }
  }
  parameters {
    key: "train_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 100\n}"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
upstream_nodes: "Transform"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 10:22:11.785852 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 6
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=6, input_dict={'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-transform/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:13161,xor_checksum:1638699709,sum_checksum:1638699709"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638699713316
last_update_time_since_epoch: 1638699713316
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)], 'transform_graph': [Artifact(artifact: id: 9
type_id: 23
uri: "pipelines/penguin-transform/Transform/transform_graph/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:transform_graph:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638699731712
last_update_time_since_epoch: 1638699731712
, artifact_type: id: 23
name: "TransformGraph"
)]}, output_dict=defaultdict(<class 'list'>, {'model': [Artifact(artifact: uri: "pipelines/penguin-transform/Trainer/model/6"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Trainer:model:0"
  }
}
, artifact_type: name: "Model"
)], 'model_run': [Artifact(artifact: uri: "pipelines/penguin-transform/Trainer/model_run/6"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Trainer:model_run:0"
  }
}
, artifact_type: name: "ModelRun"
)]}), exec_properties={'custom_config': 'null', 'train_args': '{\n  "num_steps": 100\n}', 'module_path': 'penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl', 'eval_args': '{\n  "num_steps": 5\n}'}, execution_output_uri='pipelines/penguin-transform/Trainer/.system/executor_execution/6/executor_output.pb', stateful_working_dir='pipelines/penguin-transform/Trainer/.system/stateful_working_dir/2021-12-05T10:21:51.187624', tmp_dir='pipelines/penguin-transform/Trainer/.system/executor_execution/6/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.trainer.component.Trainer"
  }
  id: "Trainer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-transform"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:21:51.187624"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-transform.Trainer"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
  inputs {
    key: "transform_graph"
    value {
      channels {
        producer_node_query {
          id: "Transform"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.Transform"
            }
          }
        }
        artifact_query {
          type {
            name: "TransformGraph"
          }
        }
        output_key: "transform_graph"
      }
    }
  }
}
outputs {
  outputs {
    key: "model"
    value {
      artifact_spec {
        type {
          name: "Model"
        }
      }
    }
  }
  outputs {
    key: "model_run"
    value {
      artifact_spec {
        type {
          name: "ModelRun"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "eval_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 5\n}"
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl"
      }
    }
  }
  parameters {
    key: "train_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 100\n}"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
upstream_nodes: "Transform"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-transform"
, pipeline_run_id='2021-12-05T10:21:51.187624')
INFO:absl:Train on the 'train' split when train_args.splits is not set.
INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set.
INFO:absl:udf_utils.get_fn {'custom_config': 'null', 'train_args': '{\n  "num_steps": 100\n}', 'module_path': 'penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl', 'eval_args': '{\n  "num_steps": 5\n}'} 'run_fn'
INFO:absl:Installing 'pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpfnmreae0', 'pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl']
Processing ./pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl
INFO:absl:Successfully installed 'pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'.
INFO:absl:Training model.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature island has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature sex has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
Installing collected packages: tfx-user-code-Trainer
Successfully installed tfx-user-code-Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature island has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature sex has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Model: "model"
INFO:absl:__________________________________________________________________________________________________
INFO:absl:Layer (type)                    Output Shape         Param #     Connected to                     
INFO:absl:==================================================================================================
INFO:absl:culmen_length_mm (InputLayer)   [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:culmen_depth_mm (InputLayer)    [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:flipper_length_mm (InputLayer)  [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:body_mass_g (InputLayer)        [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:concatenate (Concatenate)       (None, 4)            0           culmen_length_mm[0][0]           
INFO:absl:                                                                 culmen_depth_mm[0][0]            
INFO:absl:                                                                 flipper_length_mm[0][0]          
INFO:absl:                                                                 body_mass_g[0][0]                
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense (Dense)                   (None, 8)            40          concatenate[0][0]                
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_1 (Dense)                 (None, 8)            72          dense[0][0]                      
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_2 (Dense)                 (None, 3)            27          dense_1[0][0]                    
INFO:absl:==================================================================================================
INFO:absl:Total params: 139
INFO:absl:Trainable params: 139
INFO:absl:Non-trainable params: 0
INFO:absl:__________________________________________________________________________________________________
100/100 [==============================] - 1s 4ms/step - loss: 0.2132 - sparse_categorical_accuracy: 0.9490 - val_loss: 0.0102 - val_sparse_categorical_accuracy: 1.0000
INFO:tensorflow:Assets written to: pipelines/penguin-transform/Trainer/model/6/Format-Serving/assets
INFO:tensorflow:Assets written to: pipelines/penguin-transform/Trainer/model/6/Format-Serving/assets
INFO:absl:Training complete. Model written to pipelines/penguin-transform/Trainer/model/6/Format-Serving. ModelRun written to pipelines/penguin-transform/Trainer/model_run/6
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 6 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'model': [Artifact(artifact: uri: "pipelines/penguin-transform/Trainer/model/6"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Model"
)], 'model_run': [Artifact(artifact: uri: "pipelines/penguin-transform/Trainer/model_run/6"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Trainer:model_run:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ModelRun"
)]}) for execution 6
INFO:absl:MetadataStore with DB connection initialized
I1205 10:22:18.036643 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Trainer is finished.
I1205 10:22:18.041664 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Pusher is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.pusher.component.Pusher"
  }
  id: "Pusher"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-transform"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:21:51.187624"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-transform.Pusher"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
}
outputs {
  outputs {
    key: "pushed_model"
    value {
      artifact_spec {
        type {
          name: "PushedModel"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "push_destination"
    value {
      field_value {
        string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-transform\"\n  }\n}"
      }
    }
  }
}
upstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 10:22:18.063011 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 7
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=7, input_dict={'model': [Artifact(artifact: id: 12
type_id: 26
uri: "pipelines/penguin-transform/Trainer/model/6"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638699738045
last_update_time_since_epoch: 1638699738045
, artifact_type: id: 26
name: "Model"
)]}, output_dict=defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-transform/Pusher/pushed_model/7"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Pusher:pushed_model:0"
  }
}
, artifact_type: name: "PushedModel"
)]}), exec_properties={'push_destination': '{\n  "filesystem": {\n    "base_directory": "serving_model/penguin-transform"\n  }\n}', 'custom_config': 'null'}, execution_output_uri='pipelines/penguin-transform/Pusher/.system/executor_execution/7/executor_output.pb', stateful_working_dir='pipelines/penguin-transform/Pusher/.system/stateful_working_dir/2021-12-05T10:21:51.187624', tmp_dir='pipelines/penguin-transform/Pusher/.system/executor_execution/7/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.pusher.component.Pusher"
  }
  id: "Pusher"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-transform"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:21:51.187624"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-transform.Pusher"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-transform"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:21:51.187624"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-transform.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
}
outputs {
  outputs {
    key: "pushed_model"
    value {
      artifact_spec {
        type {
          name: "PushedModel"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "push_destination"
    value {
      field_value {
        string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-transform\"\n  }\n}"
      }
    }
  }
}
upstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-transform"
, pipeline_run_id='2021-12-05T10:21:51.187624')
WARNING:absl:Pusher is going to push the model without validation. Consider using Evaluator or InfraValidator in your pipeline.
INFO:absl:Model version: 1638699738
INFO:absl:Model written to serving path serving_model/penguin-transform/1638699738.
INFO:absl:Model pushed to pipelines/penguin-transform/Pusher/pushed_model/7.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 7 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-transform/Pusher/pushed_model/7"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-transform:2021-12-05T10:21:51.187624:Pusher:pushed_model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "PushedModel"
)]}) for execution 7
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component Pusher is finished.
I1205 10:22:18.092860 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type

Vous devriez voir « INFO:absl:Component Pusher terminé. si le pipeline s'est terminé avec succès.

Le composant poussoir pousse le modèle formé à l' SERVING_MODEL_DIR qui est le serving_model/penguin-transform répertoire si vous ne modifiez pas les variables dans les étapes précédentes. Vous pouvez voir le résultat à partir du navigateur de fichiers dans le panneau de gauche de Colab, ou à l'aide de la commande suivante :

# List files in created model directory.
find {SERVING_MODEL_DIR}
serving_model/penguin-transform
serving_model/penguin-transform/1638699738
serving_model/penguin-transform/1638699738/keras_metadata.pb
serving_model/penguin-transform/1638699738/assets
serving_model/penguin-transform/1638699738/variables
serving_model/penguin-transform/1638699738/variables/variables.data-00000-of-00001
serving_model/penguin-transform/1638699738/variables/variables.index
serving_model/penguin-transform/1638699738/saved_model.pb

Vous pouvez également vérifier la signature du modèle généré en utilisant l' saved_model_cli outil .

saved_model_cli show --dir {SERVING_MODEL_DIR}/$(ls -1 {SERVING_MODEL_DIR} | sort -nr | head -1) --tag_set serve --signature_def serving_default
The given SavedModel SignatureDef contains the following input(s):
  inputs['examples'] tensor_info:
      dtype: DT_STRING
      shape: (-1)
      name: serving_default_examples:0
The given SavedModel SignatureDef contains the following output(s):
  outputs['output_0'] tensor_info:
      dtype: DT_FLOAT
      shape: (-1, 3)
      name: StatefulPartitionedCall_2:0
Method name is: tensorflow/serving/predict

Parce que nous avons défini serving_default avec notre propre serve_tf_examples_fn fonction, les spectacles de signature qu'il prend une seule chaîne. Cette chaîne est une chaîne sérialisée de tf.Examples et sera analysé avec le tf.io.parse_example () fonction que nous avons défini plus tôt ( en savoir plus sur tf.Examples ici ).

Nous pouvons charger le modèle exporté et essayer quelques inférences avec quelques exemples.

# Find a model with the latest timestamp.
model_dirs = (item for item in os.scandir(SERVING_MODEL_DIR) if item.is_dir())
model_path = max(model_dirs, key=lambda i: int(i.name)).path

loaded_model = tf.keras.models.load_model(model_path)
inference_fn = loaded_model.signatures['serving_default']
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f5b0836e3d0> and <keras.engine.input_layer.InputLayer object at 0x7f5b091aa550>).
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f5b0836e3d0> and <keras.engine.input_layer.InputLayer object at 0x7f5b091aa550>).
# Prepare an example and run inference.
features = {
  'culmen_length_mm': tf.train.Feature(float_list=tf.train.FloatList(value=[49.9])),
  'culmen_depth_mm': tf.train.Feature(float_list=tf.train.FloatList(value=[16.1])),
  'flipper_length_mm': tf.train.Feature(int64_list=tf.train.Int64List(value=[213])),
  'body_mass_g': tf.train.Feature(int64_list=tf.train.Int64List(value=[5400])),
}
example_proto = tf.train.Example(features=tf.train.Features(feature=features))
examples = example_proto.SerializeToString()

result = inference_fn(examples=tf.constant([examples]))
print(result['output_0'].numpy())
[[-2.5357873 -3.0600576  3.4993587]]

Le troisième élément, qui correspond à l'espèce « Gentoo », devrait être le plus grand des trois.

Prochaines étapes

Si vous voulez en savoir plus sur Transformer composant, consultez Transformer Guide des composants . Vous pouvez trouver plus de ressources sur https://www.tensorflow.org/tfx/tutorials

S'il vous plaît voir Comprendre TFX Pipelines pour en savoir plus sur les différents concepts TFX.