TensorFlow Extended(TFX)は、本番環境用 ML パイプラインをデプロイするためのエンドツーエンドのプラットフォームです

研究段階のモデルを本番環境に移行する準備が整ったら、TFX を使用して本番環境パイプラインを作成し、管理しましょう。

Run Colab

This interactive tutorial walks through each built-in component of TFX.

チュートリアル

包括的で完全な例を挙げながら TFX の使い方を説明するチュートリアルです。

ガイドを見る

TFX の概念およびコンポーネントについて説明するガイドです。

仕組み

モデルのトレーニングを十分に行い、その素晴らしいモデルを本番環境に移行して活用する準備が整ったら、TFX を使用して完全な ML パイプラインを構築しましょう。

TFX のパイプラインは、スケーラブルで高性能の機械学習タスク専用に設計されている ML パイプラインを実装する、一連のコンポーネントです。モデリング、トレーニング、推論処理、およびオンライン、ネイティブ モバイルアプリ、JavaScript などのターゲットへのデプロイの管理を行うことができます。詳しくは、TFX ユーザーガイドをご覧ください。

これらのパイプライン コンポーネントは、個別にも使用可能な TFX ライブラリを使って作成されています。基盤となるこのライブラリの概要について、以下にご紹介します。

TensorFlow Data Validation

TensorFlow Data Validation(TFDV)は、大規模な ML データの理解、検証、モニタリングを行うデベロッパー向けのツールです。Google では毎日 TFDV を使用してペタバイト単位のデータを分析、検証しています。TFX ユーザーが ML パイプラインの正常性を維持するうえで TFDV が役立つという実績もあります。

TensorFlow Transform

機械学習を現実のデータセットに適用する場合、データを適切な形式にする前処理にかなりの労力が必要となります。たとえば、フォーマット間の変換、テキストのトークン化とステミングおよび語彙の形成、正規化などの各種算術演算などを行わなければなりません。tf.Transform を使えば、そのすべてをまとめて実行できます。

TensorFlow Model Analysis

TensorFlow Model Analysis(TFMA)では、モデルの評価指標を計算して可視化することができます。機械学習のデベロッパーは、そのモデルが一定の品質基準を満たし、データの関連するスライスすべてが想定どおりに動作するよう、モデルをデプロイする前に性能を評価する必要があります。これはたとえば、評価用データセット全体での AUC は基準を満たしているものの、特定のスライスでの性能が基準を下回るというモデルもあり得るためです。TFMA のツールを使用すると、デベロッパーはモデルの性能を詳しく理解できるようになります。

TensorFlow Serving

機械学習(ML)サービス システムでは、モデルのバージョン管理(ロールバック オプションのあるモデル更新用)および複数モデル(A/B テストによる検証用)をサポートする必要があります。その一方、同時に実行するモデルが、ハードウェア アクセラレータ(GPU と TPU)で高スループット、低レイテンシを実現することも要求されます。TensorFlow Serving は、毎秒数千万の推論を処理する性能があることが Google で実証されています。

よくある問題への解決策

プロジェクトの参考になるステップバイステップ チュートリアルをご覧ください。

中級
TensorFlow Serving を使って TensorFlow モデルをトレーニングし運用する

このガイドでは、TensorFlow Serving を使用して、スニーカーやシャツなど身に着けるものの画像を分類するニューラル ネットワークをトレーニングし、そのトレーニング済みモデルを保存して運用します。TensorFlow でのモデリングとトレーニングではなく、TensorFlow Serving に焦点を当てたガイドです。

中級
Google Cloud でホストされる TFX パイプラインを作成する

Google Cloud で独自の機械学習パイプラインを作成する TensorFlow Extended(TFX)および Cloud AI Platform パイプラインの概要。一般的な ML 開発プロセスに沿って、データセットを確認して完全に機能するパイプラインを作成します。

中級
デバイス上での推論に TFX と TensorFlow Lite を使用する

TensorFlow Extended(TFX)が機械学習モデルを作成して評価し、デバイスにデプロイする方法を学びます。TFX は TFLite をネイティブにサポートするようになり、モバイル デバイスで非常に効率的に推論を導き出せるようになりました。

ニュースとお知らせ

その他の TFX コンテンツについては、ブログYouTube の再生リストをご覧ください。
また、最新のお知らせを毎月メールボックスに直接お届けする
TensorFlow ニュースレターにご登録ください。

June 8, 2020 
Fast, scalable and accurate NLP: Why TFX is a perfect match for deploying BERT

Learn how SAP’s Concur Labs simplified the deployment of BERT models through TensorFlow libraries and extensions in this two-part blog.

2020 年 3 月 11 日 
Cloud AI Platform パイプラインの概要

ML ワークフローの安全な実行環境を提供する、インストールが簡単な企業向け Cloud AI Platform パイプラインのベータ版リリースについてのお知らせ。

2020 年 3 月 11 日 
TFX: 2020 年に TensorFlow を使用した本番環境用 ML(TF Dev Summit '20)

Google の ML プラットフォームである TFX が 2020 年にどのように変わるかを学びます。Airbus が TFX を効果的に使用した事例をご覧ください。

Continue
2020 年 3 月 9 日
TFX でのネイティブの Keras

TensorFlow 2.0 のリリースにより、Keras との緊密な統合を含め、多くの新機能と改善がもたらされました。TFX コンポーネントがネイティブの Keras をどのようにサポートするかを学びます。