tensorflow:: ops:: ParseSingleExample
#include <parsing_ops.h>
Transforms a tf.Example proto (as a string) into typed tensors.
Summary
Args:
- scope: A Scope object
- serialized: A vector containing a batch of binary serialized Example protos.
- dense_defaults: A list of Tensors (some may be empty), whose length matches the length of
dense_keys
. dense_defaults[j] provides default values when the example's feature_map lacks dense_key[j]. If an empty Tensor is provided for dense_defaults[j], then the Feature dense_keys[j] is required. The input type is inferred from dense_defaults[j], even when it's empty. If dense_defaults[j] is not empty, and dense_shapes[j] is fully defined, then the shape of dense_defaults[j] must match that of dense_shapes[j]. If dense_shapes[j] has an undefined major dimension (variable strides dense feature), dense_defaults[j] must contain a single element: the padding element. - num_sparse: The number of sparse features to be parsed from the example. This must match the lengths of
sparse_keys
andsparse_types
. - sparse_keys: A list of
num_sparse
strings. The keys expected in the Examples' features associated with sparse values. - dense_keys: The keys expected in the Examples' features associated with dense values.
- sparse_types: A list of
num_sparse
types; the data types of data in each Feature given in sparse_keys. Currently the ParseSingleExample op supports DT_FLOAT (FloatList), DT_INT64 (Int64List), and DT_STRING (BytesList). - dense_shapes: The shapes of data in each Feature given in dense_keys. The length of this list must match the length of
dense_keys
. The number of elements in the Feature corresponding to dense_key[j] must always equal dense_shapes[j].NumEntries(). If dense_shapes[j] == (D0, D1, ..., DN) then the shape of output Tensor dense_values[j] will be (D0, D1, ..., DN): In the case dense_shapes[j] = (-1, D1, ..., DN), the shape of the output Tensor dense_values[j] will be (M, D1, .., DN), where M is the number of blocks of elements of length D1 * .... * DN, in the input.
Returns:
OutputList
sparse_indicesOutputList
sparse_valuesOutputList
sparse_shapesOutputList
dense_values
Constructors and Destructors |
|
---|---|
ParseSingleExample(const ::tensorflow::Scope & scope, ::tensorflow::Input serialized, ::tensorflow::InputList dense_defaults, int64 num_sparse, const gtl::ArraySlice<::tensorflow::tstring > & sparse_keys, const gtl::ArraySlice<::tensorflow::tstring > & dense_keys, const DataTypeSlice & sparse_types, const gtl::ArraySlice< PartialTensorShape > & dense_shapes)
|
Public attributes |
|
---|---|
dense_values
|
|
operation
|
|
sparse_indices
|
|
sparse_shapes
|
|
sparse_values
|
Public attributes
dense_values
::tensorflow::OutputList dense_values
operation
Operation operation
sparse_indices
::tensorflow::OutputList sparse_indices
sparse_shapes
::tensorflow::OutputList sparse_shapes
sparse_values
::tensorflow::OutputList sparse_values
Public functions
ParseSingleExample
ParseSingleExample( const ::tensorflow::Scope & scope, ::tensorflow::Input serialized, ::tensorflow::InputList dense_defaults, int64 num_sparse, const gtl::ArraySlice<::tensorflow::tstring > & sparse_keys, const gtl::ArraySlice<::tensorflow::tstring > & dense_keys, const DataTypeSlice & sparse_types, const gtl::ArraySlice< PartialTensorShape > & dense_shapes )