tensorflow:: ops:: StringNGrams
#include <string_ops.h>
Creates ngrams from ragged string data.
Summary
This op accepts a ragged tensor with 1 ragged dimension containing only strings and outputs a ragged tensor with 1 ragged dimension containing ngrams of that string, joined along the innermost axis.
Args:
- scope: A Scope object
- data: The values tensor of the ragged string tensor to make ngrams out of. Must be a 1D string tensor.
- data_splits: The splits tensor of the ragged string tensor to make ngrams out of.
- separator: The string to append between elements of the token. Use "" for no separator.
- ngram_widths: The sizes of the ngrams to create.
- left_pad: The string to use to pad the left side of the ngram sequence. Only used if pad_width != 0.
- right_pad: The string to use to pad the right side of the ngram sequence. Only used if pad_width != 0.
- pad_width: The number of padding elements to add to each side of each sequence. Note that padding will never be greater than 'ngram_widths'-1 regardless of this value. If
pad_width=-1
, then addmax(ngram_widths)-1
elements.
Returns:
Output
ngrams: The values tensor of the output ngrams ragged tensor.Output
ngrams_splits: The splits tensor of the output ngrams ragged tensor.
Constructors and Destructors |
|
---|---|
StringNGrams(const ::tensorflow::Scope & scope, ::tensorflow::Input data, ::tensorflow::Input data_splits, StringPiece separator, const gtl::ArraySlice< int > & ngram_widths, StringPiece left_pad, StringPiece right_pad, int64 pad_width, bool preserve_short_sequences)
|
Public attributes |
|
---|---|
ngrams
|
|
ngrams_splits
|
|
operation
|
Public attributes
ngrams
::tensorflow::Output ngrams
ngrams_splits
::tensorflow::Output ngrams_splits
operation
Operation operation
Public functions
StringNGrams
StringNGrams( const ::tensorflow::Scope & scope, ::tensorflow::Input data, ::tensorflow::Input data_splits, StringPiece separator, const gtl::ArraySlice< int > & ngram_widths, StringPiece left_pad, StringPiece right_pad, int64 pad_width, bool preserve_short_sequences )