Stay organized with collections Save and categorize content based on your preferences.

Verifies that all given hyperparameters are consistent.

This function does not inspect weights themselves. Only their shape. Use assert_constraints() to assert actual weights against constraints.

See tfl.layers.KroneckerFactoredLattice class level comment for detailed description of arguments.

lattice_sizes Lattice size to check against.
units Units hyperparameter of KroneckerFactoredLattice layer.
num_terms Number of independently trained submodels hyperparameter of KroneckerFactoredLattice layer.
input_shape Shape of layer input. Useful only if units and/or monotonicities is set.
monotonicities Monotonicities hyperparameter of KroneckerFactoredLattice layer. Useful only if input_shape is set.
output_min Minimum output of KroneckerFactoredLattice layer.
output_max Maximum output of KroneckerFactoredLattice layer.

ValueError If lattice_sizes < 2.
ValueError If units < 1.
ValueError If num_terms < 1.
ValueError If len(monotonicities) does not match number of inputs.