Missed TensorFlow Dev Summit? Check out the video playlist. Watch recordings

tfl.premade.CalibratedLattice

View source on GitHub

Premade model for Tensorflow calibrated lattice models.

tfl.premade.CalibratedLattice(
    model_config, dtype=tf.float32
)

Used in the notebooks

Used in the tutorials

Creates a tf.keras.Model for the model architecture specified by the model_config, which should be a tfl.configs.CalibratedLatticeConfig. No fields in the model config will be automatically filled in, so the config must be fully specified. Note that the inputs to the model should match the order in which they are defined in the feature configs.

Example:

model_config = tfl.configs.CalibratedLatticeConfig(...)
calibrated_lattice_model = tfl.premade.CalibratedLattice(
    model_config=model_config)
calibrated_lattice_model.compile(...)
calibrated_lattice_model.fit(...)

Args:

  • model_config: Model configuration object describing model architecutre. Should be one of the model configs in tfl.configs.
  • dtype: dtype of layers used in the model.

Attributes:

  • activity_regularizer: Optional regularizer function for the output of this layer.
  • dtype
  • dynamic
  • input: Retrieves the input tensor(s) of a layer.

    Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer.

  • input_mask: Retrieves the input mask tensor(s) of a layer.

    Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer.

  • input_shape: Retrieves the input shape(s) of a layer.

    Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer, or if all inputs have the same shape.

  • input_spec: Gets the network's input specs.

  • layers

  • losses: Losses which are associated with this Layer.

    Variable regularization tensors are created when this property is accessed, so it is eager safe: accessing losses under a tf.GradientTape will propagate gradients back to the corresponding variables.

  • metrics: Returns the model's metrics added using compile, add_metric APIs.

  • metrics_names: Returns the model's display labels for all outputs.

  • name: Returns the name of this module as passed or determined in the ctor.

    NOTE: This is not the same as the self.name_scope.name which includes parent module names.

  • name_scope: Returns a tf.name_scope instance for this class.

  • non_trainable_variables

  • non_trainable_weights

  • output: Retrieves the output tensor(s) of a layer.

    Only applicable if the layer has exactly one output, i.e. if it is connected to one incoming layer.

  • output_mask: Retrieves the output mask tensor(s) of a layer.

    Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer.

  • output_shape: Retrieves the output shape(s) of a layer.

    Only applicable if the layer has one output, or if all outputs have the same shape.

  • run_eagerly: Settable attribute indicating whether the model should run eagerly.

    Running eagerly means that your model will be run step by step, like Python code. Your model might run slower, but it should become easier for you to debug it by stepping into individual layer calls.

    By default, we will attempt to compile your model to a static graph to deliver the best execution performance.

  • sample_weights

  • state_updates: Returns the updates from all layers that are stateful.

    This is useful for separating training updates and state updates, e.g. when we need to update a layer's internal state during prediction.

  • stateful

  • submodules: Sequence of all sub-modules.

    Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
assert list(a.submodules) == [b, c]
assert list(b.submodules) == [c]
assert list(c.submodules) == []
  • trainable
  • trainable_variables: Sequence of trainable variables owned by this module and its submodules.

  • trainable_weights

  • updates

  • variables: Returns the list of all layer variables/weights.

    Alias of self.weights.

  • weights: Returns the list of all layer variables/weights.

Methods

__call__

__call__(
    inputs, *args, **kwargs
)

Wraps call, applying pre- and post-processing steps.

Arguments:

  • inputs: input tensor(s).
  • *args: additional positional arguments to be passed to self.call.
  • **kwargs: additional keyword arguments to be passed to self.call.

Returns:

Output tensor(s).

Note:

  • The following optional keyword arguments are reserved for specific uses:
    • training: Boolean scalar tensor of Python boolean indicating whether the call is meant for training or inference.
    • mask: Boolean input mask.
  • If the layer's call method takes a mask argument (as some Keras layers do), its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support.

Raises:

  • ValueError: if the layer's call method returns None (an invalid value).

build

build(
    input_shape
)

Builds the model based on input shapes received.

This is to be used for subclassed models, which do not know at instantiation time what their inputs look like.

This method only exists for users who want to call model.build() in a standalone way (as a substitute for calling the model on real data to build it). It will never be called by the framework (and thus it will never throw unexpected errors in an unrelated workflow).

Args:

  • input_shape: Single tuple, TensorShape, or list of shapes, where shapes are tuples, integers, or TensorShapes.

Raises:

  • ValueError: 1. In case of invalid user-provided data (not of type tuple, list, or TensorShape).
    1. If the model requires call arguments that are agnostic to the input shapes (positional or kwarg in call signature).
    2. If not all layers were properly built.
    3. If float type inputs are not supported within the layers.

In each of these cases, the user should build their model by calling it on real tensor data.

compile

compile(
    optimizer='rmsprop', loss=None, metrics=None, loss_weights=None,
    sample_weight_mode=None, weighted_metrics=None, target_tensors=None,
    distribute=None, **kwargs
)

Configures the model for training.

Arguments:

  • optimizer: String (name of optimizer) or optimizer instance. See tf.keras.optimizers.
  • loss: String (name of objective function), objective function or tf.keras.losses.Loss instance. See tf.keras.losses. An objective function is any callable with the signature scalar_loss = fn(y_true, y_pred). If the model has multiple outputs, you can use a different loss on each output by passing a dictionary or a list of losses. The loss value that will be minimized by the model will then be the sum of all individual losses.
  • metrics: List of metrics to be evaluated by the model during training and testing. Typically you will use metrics=['accuracy']. To specify different metrics for different outputs of a multi-output model, you could also pass a dictionary, such as metrics={'output_a': 'accuracy', 'output_b': ['accuracy', 'mse']}. You can also pass a list (len = len(outputs)) of lists of metrics such as metrics=[['accuracy'], ['accuracy', 'mse']] or metrics=['accuracy', ['accuracy', 'mse']].
  • loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the loss contributions of different model outputs. The loss value that will be minimized by the model will then be the weighted sum of all individual losses, weighted by the loss_weights coefficients. If a list, it is expected to have a 1:1 mapping to the model's outputs. If a tensor, it is expected to map output names (strings) to scalar coefficients.
  • sample_weight_mode: If you need to do timestep-wise sample weighting (2D weights), set this to "temporal". None defaults to sample-wise weights (1D). If the model has multiple outputs, you can use a different sample_weight_mode on each output by passing a dictionary or a list of modes.
  • weighted_metrics: List of metrics to be evaluated and weighted by sample_weight or class_weight during training and testing.
  • target_tensors: By default, Keras will create placeholders for the model's target, which will be fed with the target data during training. If instead you would like to use your own target tensors (in turn, Keras will not expect external Numpy data for these targets at training time), you can specify them via the target_tensors argument. It can be a single tensor (for a single-output model), a list of tensors, or a dict mapping output names to target tensors.
  • distribute: NOT SUPPORTED IN TF 2.0, please create and compile the model under distribution strategy scope instead of passing it to compile.
  • **kwargs: Any additional arguments.

Raises:

  • ValueError: In case of invalid arguments for optimizer, loss, metrics or sample_weight_mode.

compute_mask

compute_mask(
    inputs, mask
)

Computes an output mask tensor.

Arguments:

  • inputs: Tensor or list of tensors.
  • mask: Tensor or list of tensors.

Returns:

None or a tensor (or list of tensors, one per output tensor of the layer).

compute_output_shape

compute_output_shape(
    input_shape
)

Computes the output shape of the layer.

If the layer has not been built, this method will call build on the layer. This assumes that the layer will later be used with inputs that match the input shape provided here.

Arguments:

  • input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer.

Returns:

An input shape tuple.

count_params

count_params()

Count the total number of scalars composing the weights.

Returns:

An integer count.

Raises:

  • ValueError: if the layer isn't yet built (in which case its weights aren't yet defined).

evaluate

evaluate(
    x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None,
    callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False
)

Returns the loss value & metrics values for the model in test mode.

Computation is done in batches.

Arguments:

  • x: Input data. It could be:
    • A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs).
    • A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs).
    • A dict mapping input names to the corresponding array/tensors, if the model has named inputs.
    • A tf.data dataset.
    • A generator or keras.utils.Sequence instance. A more detailed description of unpacking behavior for iterator types (Dataset, generator, Sequence) is given in the Unpacking behavior for iterator-like inputs section of Model.fit.
  • y: Target data. Like the input data x, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with x (you cannot have Numpy inputs and tensor targets, or inversely). If x is a dataset, generator or keras.utils.Sequence instance, y should not be specified (since targets will be obtained from the iterator/dataset).
  • batch_size: Integer or None. Number of samples per gradient update. If unspecified, batch_size will default to 32. Do not specify the batch_size if your data is in the form of symbolic tensors, dataset, generators, or keras.utils.Sequence instances (since they generate batches).
  • verbose: 0 or 1. Verbosity mode. 0 = silent, 1 = progress bar.
  • sample_weight: Optional Numpy array of weights for the test samples, used for weighting the loss function. You can either pass a flat (1D) Numpy array with the same length as the input samples (1:1 mapping between weights and samples), or in the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). This argument is not supported when x is a dataset, instead pass sample weights as the third element of x.
  • steps: Integer or None. Total number of steps (batches of samples) before declaring the evaluation round finished. Ignored with the default value of None. If x is a tf.data dataset and steps is None, 'evaluate' will run until the dataset is exhausted. This argument is not supported with array inputs.
  • callbacks: List of keras.callbacks.Callback instances. List of callbacks to apply during evaluation. See callbacks.
  • max_queue_size: Integer. Used for generator or keras.utils.Sequence input only. Maximum size for the generator queue. If unspecified, max_queue_size will default to 10.
  • workers: Integer. Used for generator or keras.utils.Sequence input only. Maximum number of processes to spin up when using process-based threading. If unspecified, workers will default to 1. If 0, will execute the generator on the main thread.
  • use_multiprocessing: Boolean. Used for generator or keras.utils.Sequence input only. If True, use process-based threading. If unspecified, use_multiprocessing will default to False. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes.

See the discussion of Unpacking behavior for iterator-like inputs for Model.fit.

Returns:

Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute model.metrics_names will give you the display labels for the scalar outputs.

Raises:

  • ValueError: in case of invalid arguments.

evaluate_generator

evaluate_generator(
    generator, steps=None, callbacks=None, max_queue_size=10, workers=1,
    use_multiprocessing=False, verbose=0
)

Evaluates the model on a data generator. (deprecated)

DEPRECATED:

Model.evaluate now supports generators, so there is no longer any need to use this endpoint.

fit

fit(
    x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None,
    validation_split=0.0, validation_data=None, shuffle=True, class_weight=None,
    sample_weight=None, initial_epoch=0, steps_per_epoch=None,
    validation_steps=None, validation_freq=1, max_queue_size=10, workers=1,
    use_multiprocessing=False, **kwargs
)

Trains the model for a fixed number of epochs (iterations on a dataset).

Arguments:

  • x: Input data. It could be:
    • A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs).
    • A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs).
    • A dict mapping input names to the corresponding array/tensors, if the model has named inputs.
    • A tf.data dataset. Should return a tuple of either (inputs, targets) or (inputs, targets, sample_weights).
    • A generator or keras.utils.Sequence returning (inputs, targets) or (inputs, targets, sample weights). A more detailed description of unpacking behavior for iterator types (Dataset, generator, Sequence) is given below.
  • y: Target data. Like the input data x, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with x (you cannot have Numpy inputs and tensor targets, or inversely). If x is a dataset, generator, or keras.utils.Sequence instance, y should not be specified (since targets will be obtained from x).
  • batch_size: Integer or None. Number of samples per gradient update. If unspecified, batch_size will default to 32. Do not specify the batch_size if your data is in the form of symbolic tensors, datasets, generators, or keras.utils.Sequence instances (since they generate batches).
  • epochs: Integer. Number of epochs to train the model. An epoch is an iteration over the entire x and y data provided. Note that in conjunction with initial_epoch, epochs is to be understood as "final epoch". The model is not trained for a number of iterations given by epochs, but merely until the epoch of index epochs is reached.
  • verbose: 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. Note that the progress bar is not particularly useful when logged to a file, so verbose=2 is recommended when not running interactively (eg, in a production environment).
  • callbacks: List of keras.callbacks.Callback instances. List of callbacks to apply during training. See tf.keras.callbacks.
  • validation_split: Float between 0 and 1. Fraction of the training data to be used as validation data. The model will set apart this fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data at the end of each epoch. The validation data is selected from the last samples in the x and y data provided, before shuffling. This argument is not supported when x is a dataset, generator or keras.utils.Sequence instance.
  • validation_data: Data on which to evaluate the loss and any model metrics at the end of each epoch. The model will not be trained on this data. validation_data will override validation_split. validation_data could be:
    • tuple (x_val, y_val) of Numpy arrays or tensors
    • tuple (x_val, y_val, val_sample_weights) of Numpy arrays
    • dataset For the first two cases, batch_size must be provided. For the last case, validation_steps could be provided.
  • shuffle: Boolean (whether to shuffle the training data before each epoch) or str (for 'batch'). 'batch' is a special option for dealing with the limitations of HDF5 data; it shuffles in batch-sized chunks. Has no effect when steps_per_epoch is not None.
  • class_weight: Optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting the loss function (during training only). This can be useful to tell the model to "pay more attention" to samples from an under-represented class.
  • sample_weight: Optional Numpy array of weights for the training samples, used for weighting the loss function (during training only). You can either pass a flat (1D) Numpy array with the same length as the input samples (1:1 mapping between weights and samples), or in the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). This argument is not supported when x is a dataset, generator, or keras.utils.Sequence instance, instead provide the sample_weights as the third element of x.
  • initial_epoch: Integer. Epoch at which to start training (useful for resuming a previous training run).
  • steps_per_epoch: Integer or None. Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. When training with input tensors such as TensorFlow data tensors, the default None is equal to the number of samples in your dataset divided by the batch size, or 1 if that cannot be determined. If x is a tf.data dataset, and 'steps_per_epoch' is None, the epoch will run until the input dataset is exhausted. This argument is not supported with array inputs.
  • validation_steps: Only relevant if validation_data is provided and is a tf.data dataset. Total number of steps (batches of samples) to draw before stopping when performing validation at the end of every epoch. If 'validation_steps' is None, validation will run until the validation_data dataset is exhausted. In the case of a infinite dataset, it will run into a infinite loop. If 'validation_steps' is specified and only part of the dataset will be consumed, the evaluation will start from the beginning of the dataset at each epoch. This ensures that the same validation samples are used every time.
  • validation_freq: Only relevant if validation data is provided. Integer or collections_abc.Container instance (e.g. list, tuple, etc.). If an integer, specifies how many training epochs to run before a new validation run is performed, e.g. validation_freq=2 runs validation every 2 epochs. If a Container, specifies the epochs on which to run validation, e.g. validation_freq=[1, 2, 10] runs validation at the end of the 1st, 2nd, and 10th epochs.
  • max_queue_size: Integer. Used for generator or keras.utils.Sequence input only. Maximum size for the generator queue. If unspecified, max_queue_size will default to 10.
  • workers: Integer. Used for generator or keras.utils.Sequence input only. Maximum number of processes to spin up when using process-based threading. If unspecified, workers will default to 1. If 0, will execute the generator on the main thread.
  • use_multiprocessing: Boolean. Used for generator or keras.utils.Sequence input only. If True, use process-based threading. If unspecified, use_multiprocessing will default to False. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes.
  • **kwargs: Used for backwards compatibility.

Unpacking behavior for iterator-like inputs: A common pattern is to pass a tf.data.Dataset, generator, or tf.keras.utils.Sequence to the x argument of fit, which will in fact yield not only features (x) but optionally targets (y) and sample weights. Keras requires that the output of such iterator-likes be unambiguous. The iterator should return a tuple of length 1, 2, or 3, where the optional second and third elements will be used for y and sample_weight respectively. Any other type provided will be wrapped in a length one tuple, effectively treating everything as 'x'. When yielding dicts, they should still adhere to the top-level tuple structure. e.g. ({"x0": x0, "x1": x1}, y). Keras will not attempt to separate features, targets, and weights from the keys of a single dict. A notable unsupported data type is the namedtuple. The reason is that it behaves like both an ordered datatype (tuple) and a mapping datatype (dict). So given a namedtuple of the form: namedtuple("example_tuple", ["y", "x"]) it is ambiguous whether to reverse the order of the elements when interpreting the value. Even worse is a tuple of the form: namedtuple("other_tuple", ["x", "y", "z"]) where it is unclear if the tuple was intended to be unpacked into x, y, and sample_weight or passed through as a single element to x. As a result the data processing code will simply raise a ValueError if it encounters a namedtuple. (Along with instructions to remedy the issue.)

Returns:

A History object. Its History.history attribute is a record of training loss values and metrics values at successive epochs, as well as validation loss values and validation metrics values (if applicable).

Raises:

  • RuntimeError: If the model was never compiled.
  • ValueError: In case of mismatch between the provided input data and what the model expects.

fit_generator

fit_generator(
    generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None,
    validation_data=None, validation_steps=None, validation_freq=1,
    class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False,
    shuffle=True, initial_epoch=0
)

Fits the model on data yielded batch-by-batch by a Python generator. (deprecated)

DEPRECATED:

Model.fit now supports generators, so there is no longer any need to use this endpoint.

from_config

@classmethod
from_config(
    cls, config, custom_objects=None
)

Instantiates a Model from its config (output of get_config()).

Arguments:

  • config: Model config dictionary.
  • custom_objects: Optional dictionary mapping names (strings) to custom classes or functions to be considered during deserialization.

Returns:

A model instance.

Raises:

  • ValueError: In case of improperly formatted config dict.

get_config

get_config()

Returns the config of the layer.

A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration.

The config of a layer does not include connectivity information, nor the layer class name. These are handled by Network (one layer of abstraction above).

Returns:

Python dictionary.

get_input_at

get_input_at(
    node_index
)

Retrieves the input tensor(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A tensor (or list of tensors if the layer has multiple inputs).

Raises:

  • RuntimeError: If called in Eager mode.

get_input_mask_at

get_input_mask_at(
    node_index
)

Retrieves the input mask tensor(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A mask tensor (or list of tensors if the layer has multiple inputs).

get_input_shape_at

get_input_shape_at(
    node_index
)

Retrieves the input shape(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A shape tuple (or list of shape tuples if the layer has multiple inputs).

Raises:

  • RuntimeError: If called in Eager mode.

get_layer

get_layer(
    name=None, index=None
)

Retrieves a layer based on either its name (unique) or index.

If name and index are both provided, index will take precedence. Indices are based on order of horizontal graph traversal (bottom-up).

Arguments:

  • name: String, name of layer.
  • index: Integer, index of layer.

Returns:

A layer instance.

Raises:

  • ValueError: In case of invalid layer name or index.

get_losses_for

get_losses_for(
    inputs
)

Retrieves losses relevant to a specific set of inputs.

Arguments:

  • inputs: Input tensor or list/tuple of input tensors.

Returns:

List of loss tensors of the layer that depend on inputs.

get_output_at

get_output_at(
    node_index
)

Retrieves the output tensor(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A tensor (or list of tensors if the layer has multiple outputs).

Raises:

  • RuntimeError: If called in Eager mode.

get_output_mask_at

get_output_mask_at(
    node_index
)

Retrieves the output mask tensor(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A mask tensor (or list of tensors if the layer has multiple outputs).

get_output_shape_at

get_output_shape_at(
    node_index
)

Retrieves the output shape(s) of a layer at a given node.

Arguments:

  • node_index: Integer, index of the node from which to retrieve the attribute. E.g. node_index=0 will correspond to the first time the layer was called.

Returns:

A shape tuple (or list of shape tuples if the layer has multiple outputs).

Raises:

  • RuntimeError: If called in Eager mode.

get_updates_for

get_updates_for(
    inputs
)

Retrieves updates relevant to a specific set of inputs.

Arguments:

  • inputs: Input tensor or list/tuple of input tensors.

Returns:

List of update ops of the layer that depend on inputs.

get_weights

get_weights()

Retrieves the weights of the model.

Returns:

A flat list of Numpy arrays.

load_weights

load_weights(
    filepath, by_name=False, skip_mismatch=False
)

Loads all layer weights, either from a TensorFlow or an HDF5 weight file.

If by_name is False weights are loaded based on the network's topology. This means the architecture should be the same as when the weights were saved. Note that layers that don't have weights are not taken into account in the topological ordering, so adding or removing layers is fine as long as they don't have weights.

If by_name is True, weights are loaded into layers only if they share the same name. This is useful for fine-tuning or transfer-learning models where some of the layers have changed.

Only topological loading (by_name=False) is supported when loading weights from the TensorFlow format. Note that topological loading differs slightly between TensorFlow and HDF5 formats for user-defined classes inheriting from tf.keras.Model: HDF5 loads based on a flattened list of weights, while the TensorFlow format loads based on the object-local names of attributes to which layers are assigned in the Model's constructor.

Arguments:

  • filepath: String, path to the weights file to load. For weight files in TensorFlow format, this is the file prefix (the same as was passed to save_weights).
  • by_name: Boolean, whether to load weights by name or by topological order. Only topological loading is supported for weight files in TensorFlow format.
  • skip_mismatch: Boolean, whether to skip loading of layers where there is a mismatch in the number of weights, or a mismatch in the shape of the weight (only valid when by_name=True).

Returns:

When loading a weight file in TensorFlow format, returns the same status object as tf.train.Checkpoint.restore. When graph building, restore ops are run automatically as soon as the network is built (on first call for user-defined classes inheriting from Model, immediately if it is already built).

When loading weights in HDF5 format, returns None.

Raises:

  • ImportError: If h5py is not available and the weight file is in HDF5 format.
  • ValueError: If skip_mismatch is set to True when by_name is False.

predict

predict(
    x, batch_size=None, verbose=0, steps=None, callbacks=None, max_queue_size=10,
    workers=1, use_multiprocessing=False
)

Generates output predictions for the input samples.

Computation is done in batches.

Arguments:

  • x: Input samples. It could be:
    • A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs).
    • A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs).
    • A tf.data dataset.
    • A generator or keras.utils.Sequence instance. A more detailed description of unpacking behavior for iterator types (Dataset, generator, Sequence) is given in the Unpacking behavior for iterator-like inputs section of Model.fit.
  • batch_size: Integer or None. Number of samples per gradient update. If unspecified, batch_size will default to 32. Do not specify the batch_size if your data is in the form of symbolic tensors, dataset, generators, or keras.utils.Sequence instances (since they generate batches).
  • verbose: Verbosity mode, 0 or 1.
  • steps: Total number of steps (batches of samples) before declaring the prediction round finished. Ignored with the default value of None. If x is a tf.data dataset and steps is None, predict will run until the input dataset is exhausted.
  • callbacks: List of keras.callbacks.Callback instances. List of callbacks to apply during prediction. See callbacks.
  • max_queue_size: Integer. Used for generator or keras.utils.Sequence input only. Maximum size for the generator queue. If unspecified, max_queue_size will default to 10.
  • workers: Integer. Used for generator or keras.utils.Sequence input only. Maximum number of processes to spin up when using process-based threading. If unspecified, workers will default to 1. If 0, will execute the generator on the main thread.
  • use_multiprocessing: Boolean. Used for generator or keras.utils.Sequence input only. If True, use process-based threading. If unspecified, use_multiprocessing will default to False. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes.

See the discussion of Unpacking behavior for iterator-like inputs for Model.fit. Note that Model.predict uses the same interpretation rules as Model.fit and Model.evaluate, so inputs must be unambiguous for all three methods.

Returns:

Numpy array(s) of predictions.

Raises:

  • ValueError: In case of mismatch between the provided input data and the model's expectations, or in case a stateful model receives a number of samples that is not a multiple of the batch size.

predict_generator

predict_generator(
    generator, steps=None, callbacks=None, max_queue_size=10, workers=1,
    use_multiprocessing=False, verbose=0
)

Generates predictions for the input samples from a data generator. (deprecated)

DEPRECATED:

Model.predict now supports generators, so there is no longer any need to use this endpoint.

predict_on_batch

predict_on_batch(
    x
)

Returns predictions for a single batch of samples.

Arguments:

  • x: Input data. It could be:
    • A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs).
    • A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs).
    • A tf.data dataset.

Returns:

Numpy array(s) of predictions.

Raises:

  • ValueError: In case of mismatch between given number of inputs and expectations of the model.

reset_metrics

reset_metrics()

Resets the state of metrics.

reset_states

reset_states()

save

save(
    filepath, overwrite=True, include_optimizer=True, save_format=None,
    signatures=None, options=None
)

Saves the model to Tensorflow SavedModel or a single HDF5 file.

The savefile includes:

  • The model architecture, allowing to re-instantiate the model.
  • The model weights.
  • The state of the optimizer, allowing to resume training exactly where you left off.

This allows you to save the entirety of the state of a model in a single file.

Saved models can be reinstantiated via keras.models.load_model. The model returned by load_model is a compiled model ready to be used (unless the saved model was never compiled in the first place).

Models built with the Sequential and Functional API can be saved to both the HDF5 and SavedModel formats. Subclassed models can only be saved with the SavedModel format.

Arguments:

  • filepath: String, path to SavedModel or H5 file to save the model.
  • overwrite: Whether to silently overwrite any existing file at the target location, or provide the user with a manual prompt.
  • include_optimizer: If True, save optimizer's state together.
  • save_format: Either 'tf' or 'h5', indicating whether to save the model to Tensorflow SavedModel or HDF5. Defaults to 'tf' in TF 2.X, and 'h5' in TF 1.X.
  • signatures: Signatures to save with the SavedModel. Applicable to the 'tf' format only. Please see the signatures argument in tf.saved_model.save for details.
  • options: Optional tf.saved_model.SaveOptions object that specifies options for saving to SavedModel.

Example:

from keras.models import load_model

model.save('my_model.h5')  # creates a HDF5 file 'my_model.h5'
del model  # deletes the existing model

# returns a compiled model
# identical to the previous one
model = load_model('my_model.h5')

save_weights

save_weights(
    filepath, overwrite=True, save_format=None
)

Saves all layer weights.

Either saves in HDF5 or in TensorFlow format based on the save_format argument.

When saving in HDF5 format, the weight file has: - layer_names (attribute), a list of strings (ordered names of model layers). - For every layer, a group named layer.name - For every such layer group, a group attribute weight_names, a list of strings (ordered names of weights tensor of the layer). - For every weight in the layer, a dataset storing the weight value, named after the weight tensor.

When saving in TensorFlow format, all objects referenced by the network are saved in the same format as tf.train.Checkpoint, including any Layer instances or Optimizer instances assigned to object attributes. For networks constructed from inputs and outputs using tf.keras.Model(inputs, outputs), Layer instances used by the network are tracked/saved automatically. For user-defined classes which inherit from tf.keras.Model, Layer instances must be assigned to object attributes, typically in the constructor. See the documentation of tf.train.Checkpoint and tf.keras.Model for details.

While the formats are the same, do not mix save_weights and tf.train.Checkpoint. Checkpoints saved by Model.save_weights should be loaded using Model.load_weights. Checkpoints saved using tf.train.Checkpoint.save should be restored using the corresponding tf.train.Checkpoint.restore. Prefer tf.train.Checkpoint over save_weights for training checkpoints.

The TensorFlow format matches objects and variables by starting at a root object, self for save_weights, and greedily matching attribute names. For Model.save this is the Model, and for Checkpoint.save this is the Checkpoint even if the Checkpoint has a model attached. This means saving a tf.keras.Model using save_weights and loading into a tf.train.Checkpoint with a Model attached (or vice versa) will not match the Model's variables. See the guide to training checkpoints for details on the TensorFlow format.

Arguments:

  • filepath: String, path to the file to save the weights to. When saving in TensorFlow format, this is the prefix used for checkpoint files (multiple files are generated). Note that the '.h5' suffix causes weights to be saved in HDF5 format.
  • overwrite: Whether to silently overwrite any existing file at the target location, or provide the user with a manual prompt.
  • save_format: Either 'tf' or 'h5'. A filepath ending in '.h5' or '.keras' will default to HDF5 if save_format is None. Otherwise None defaults to 'tf'.

Raises:

  • ImportError: If h5py is not available when attempting to save in HDF5 format.
  • ValueError: For invalid/unknown format arguments.

set_weights

set_weights(
    weights
)

Sets the weights of the layer, from Numpy arrays.

Arguments:

  • weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output of get_weights).

Raises:

  • ValueError: If the provided weights list does not match the layer's specifications.

summary

summary(
    line_length=None, positions=None, print_fn=None
)

Prints a string summary of the network.

Arguments:

  • line_length: Total length of printed lines (e.g. set this to adapt the display to different terminal window sizes).
  • positions: Relative or absolute positions of log elements in each line. If not provided, defaults to [.33, .55, .67, 1.].
  • print_fn: Print function to use. Defaults to print. It will be called on each line of the summary. You can set it to a custom function in order to capture the string summary.

Raises:

  • ValueError: if summary() is called before the model is built.

test_on_batch

test_on_batch(
    x, y=None, sample_weight=None, reset_metrics=True
)

Test the model on a single batch of samples.

Arguments:

  • x: Input data. It could be:
    • A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs).
    • A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs).
    • A dict mapping input names to the corresponding array/tensors, if the model has named inputs.
    • A tf.data dataset.
  • y: Target data. Like the input data x, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with x (you cannot have Numpy inputs and tensor targets, or inversely). If x is a dataset y should not be specified (since targets will be obtained from the iterator).
  • sample_weight: Optional array of the same length as x, containing weights to apply to the model's loss for each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). This argument is not supported when x is a dataset.
  • reset_metrics: If True, the metrics returned will be only for this batch. If False, the metrics will be statefully accumulated across batches.

Returns:

Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute model.metrics_names will give you the display labels for the scalar outputs.

Raises:

  • ValueError: In case of invalid user-provided arguments.

to_json

to_json(
    **kwargs
)

Returns a JSON string containing the network configuration.

To load a network from a JSON save file, use keras.models.model_from_json(json_string, custom_objects={}).

Arguments:

  • **kwargs: Additional keyword arguments to be passed to json.dumps().

Returns:

A JSON string.

to_yaml

to_yaml(
    **kwargs
)

Returns a yaml string containing the network configuration.

To load a network from a yaml save file, use keras.models.model_from_yaml(yaml_string, custom_objects={}).

custom_objects should be a dictionary mapping the names of custom losses / layers / etc to the corresponding functions / classes.

Arguments:

  • **kwargs: Additional keyword arguments to be passed to yaml.dump().

Returns:

A YAML string.

Raises:

  • ImportError: if yaml module is not found.

train_on_batch

train_on_batch(
    x, y=None, sample_weight=None, class_weight=None, reset_metrics=True
)

Runs a single gradient update on a single batch of data.

Arguments:

  • x: Input data. It could be:
    • A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs).
    • A TensorFlow tensor, or a list of tensors (in case the model has multiple inputs).
    • A dict mapping input names to the corresponding array/tensors, if the model has named inputs.
    • A tf.data dataset.
  • y: Target data. Like the input data x, it could be either Numpy array(s) or TensorFlow tensor(s). It should be consistent with x (you cannot have Numpy inputs and tensor targets, or inversely). If x is a dataset, y should not be specified (since targets will be obtained from the iterator).
  • sample_weight: Optional array of the same length as x, containing weights to apply to the model's loss for each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). This argument is not supported when x is a dataset.
  • class_weight: Optional dictionary mapping class indices (integers) to a weight (float) to apply to the model's loss for the samples from this class during training. This can be useful to tell the model to "pay more attention" to samples from an under-represented class.
  • reset_metrics: If True, the metrics returned will be only for this batch. If False, the metrics will be statefully accumulated across batches.

Returns:

Scalar training loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute model.metrics_names will give you the display labels for the scalar outputs.

Raises:

  • ValueError: In case of invalid user-provided arguments.

with_name_scope

@classmethod
with_name_scope(
    cls, method
)

Decorator to automatically enter the module name scope.

class MyModule(tf.Module):
  @tf.Module.with_name_scope
  def __call__(self, x):
    if not hasattr(self, 'w'):
      self.w = tf.Variable(tf.random.normal([x.shape[1], 64]))
    return tf.matmul(x, self.w)

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

mod = MyModule()
mod(tf.ones([8, 32]))
# ==> <tf.Tensor: ...>
mod.w
# ==> <tf.Variable ...'my_module/w:0'>

Args:

  • method: The method to wrap.

Returns:

The original method wrapped such that it enters the module's name scope.