RSVP für Ihr lokales TensorFlow Everywhere-Event noch heute!


Verifies that all given hyperparameters are consistent.

This function does not inspect weights themselves. Only their shape. Use assert_constraints() to assert actual weights against constraints.

See tfl.layers.KroneckerFactoredLattice class level comment for detailed description of arguments.

lattice_sizes Lattice size to check against.
units Units hyperparameter of KroneckerFactoredLattice layer.
num_terms Number of independently trained submodels hyperparameter of KroneckerFactoredLattice layer.
input_shape Shape of layer input. Useful only if units and/or monotonicities is set.
monotonicities Monotonicities hyperparameter of KroneckerFactoredLattice layer. Useful only if input_shape is set.
output_min Minimum output of KroneckerFactoredLattice layer.
output_max Maximum output of KroneckerFactoredLattice layer.

ValueError If lattice_sizes < 2.
ValueError If units < 1.
ValueError If num_terms < 1.
ValueError If len(monotonicities) does not match number of inputs.