7 Aralık'ta düzenlenecek Makine Öğreniminde Kadın Sempozyumu'na katılın Şimdi kaydolun

TensorFlow Lite'daki İmzalar

Koleksiyonlar ile düzeninizi koruyun İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.

TensorFlow.org'da görüntüleyin Google Colab'da çalıştırın Kaynağı GitHub'da görüntüleyin Not defterini indir

TensorFlow Lite, TensorFlow modelinin giriş/çıkış özelliklerinin TensorFlow Lite modellerine dönüştürülmesini destekler. Giriş/çıkış özelliklerine "imzalar" denir. Bir SavedModel oluştururken veya somut işlevler oluştururken imzalar belirtilebilir.

TensorFlow Lite'daki imzalar aşağıdaki özellikleri sağlar:

  • TensorFlow modelinin imzalarına uyarak dönüştürülmüş TensorFlow Lite modelinin girdilerini ve çıktılarını belirtirler.
  • Tek bir TensorFlow Lite modelinin birden çok giriş noktasını desteklemesine izin verin.

İmza üç parçadan oluşur:

  • Girişler: İmzadaki giriş adından giriş tensörüne girişler için eşleyin.
  • Çıktılar: İmzadaki çıktı adından çıktı tensörüne çıktı eşlemesi için eşleyin.
  • İmza Anahtarı: Grafiğin giriş noktasını tanımlayan ad.

Kurmak

import tensorflow as tf

Örnek model

Diyelim ki TensorFlow modeli olarak kodlama ve kod çözme gibi iki görevimiz var:

class Model(tf.Module):

  @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.float32)])
  def encode(self, x):
    result = tf.strings.as_string(x)
    return {
         "encoded_result": result
    }

  @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)])
  def decode(self, x):
    result = tf.strings.to_number(x)
    return {
         "decoded_result": result
    }

İmza açısından, yukarıdaki TensorFlow modeli aşağıdaki gibi özetlenebilir:

  • İmza

    • Anahtar: kodlamak
    • Girişler: {"x"}
    • Çıktı: {"encoding_result"}
  • İmza

    • Anahtar: kod çözme
    • Girişler: {"x"}
    • Çıktı: {"decoding_result"}

İmzalı bir modeli dönüştürme

TensorFlow Lite dönüştürücü API'leri, yukarıdaki imza bilgilerini dönüştürülmüş TensorFlow Lite modeline getirecektir.

Bu dönüştürme işlevi, TensorFlow 2.7.0 sürümünden başlayarak tüm dönüştürücü API'lerinde mevcuttur. Örnek kullanımlara bakın.

Kayıtlı Modelden

model = Model()

# Save the model
SAVED_MODEL_PATH = 'content/saved_models/coding'

tf.saved_model.save(
    model, SAVED_MODEL_PATH,
    signatures={
      'encode': model.encode.get_concrete_function(),
      'decode': model.decode.get_concrete_function()
    })

# Convert the saved model using TFLiteConverter
converter = tf.lite.TFLiteConverter.from_saved_model(SAVED_MODEL_PATH)
converter.target_spec.supported_ops = [
    tf.lite.OpsSet.TFLITE_BUILTINS,  # enable TensorFlow Lite ops.
    tf.lite.OpsSet.SELECT_TF_OPS  # enable TensorFlow ops.
]
tflite_model = converter.convert()

# Print the signatures from the converted model
interpreter = tf.lite.Interpreter(model_content=tflite_model)
signatures = interpreter.get_signature_list()
print(signatures)
2021-11-15 12:17:48.388332: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: content/saved_models/coding/assets
2021-11-15 12:17:48.727484: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:363] Ignored output_format.
2021-11-15 12:17:48.727522: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:366] Ignored drop_control_dependency.
WARNING:absl:Buffer deduplication procedure will be skipped when flatbuffer library is not properly loaded
2021-11-15 12:17:48.727529: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:372] Ignored change_concat_input_ranges.
2021-11-15 12:17:48.767576: W tensorflow/compiler/mlir/lite/flatbuffer_export.cc:1891] TFLite interpreter needs to link Flex delegate in order to run the model since it contains the following Select TFop(s):
Flex ops: FlexAsString, FlexStringToNumber
Details:
    tf.AsString(tensor<?xf32>) -> (tensor<?x!tf_type.string>) : {device = "", fill = "", precision = -1 : i64, scientific = false, shortest = false, width = -1 : i64}
    tf.StringToNumber(tensor<?x!tf_type.string>) -> (tensor<?xf32>) : {device = "", out_type = f32}
See instructions: https://www.tensorflow.org/lite/guide/ops_select
{'decode': {'inputs': ['x'], 'outputs': ['decoded_result']}, 'encode': {'inputs': ['x'], 'outputs': ['encoded_result']} }
INFO: Created TensorFlow Lite delegate for select TF ops.
INFO: TfLiteFlexDelegate delegate: 1 nodes delegated out of 1 nodes with 1 partitions.

Keras Modelinden

# Generate a Keras model.
keras_model = tf.keras.Sequential(
    [
        tf.keras.layers.Dense(2, input_dim=4, activation='relu', name='x'),
        tf.keras.layers.Dense(1, activation='relu', name='output'),
    ]
)

# Convert the keras model using TFLiteConverter.
# Keras model converter API uses the default signature automatically.
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
tflite_model = converter.convert()

# Print the signatures from the converted model
interpreter = tf.lite.Interpreter(model_content=tflite_model)

signatures = interpreter.get_signature_list()
print(signatures)
INFO:tensorflow:Assets written to: /tmp/tmplhr7j714/assets
INFO:tensorflow:Assets written to: /tmp/tmplhr7j714/assets
2021-11-15 12:17:49.368226: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:363] Ignored output_format.
2021-11-15 12:17:49.368264: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:366] Ignored drop_control_dependency.
WARNING:absl:Buffer deduplication procedure will be skipped when flatbuffer library is not properly loaded
{'serving_default': {'inputs': ['x_input'], 'outputs': ['output']} }

Somut Fonksiyonlardan

model = Model()

# Convert the concrete functions using TFLiteConverter
converter = tf.lite.TFLiteConverter.from_concrete_functions(
    [model.encode.get_concrete_function(),
     model.decode.get_concrete_function()], model)
converter.target_spec.supported_ops = [
    tf.lite.OpsSet.TFLITE_BUILTINS,  # enable TensorFlow Lite ops.
    tf.lite.OpsSet.SELECT_TF_OPS  # enable TensorFlow ops.
]
tflite_model = converter.convert()

# Print the signatures from the converted model
interpreter = tf.lite.Interpreter(model_content=tflite_model)
signatures = interpreter.get_signature_list()
print(signatures)
INFO:tensorflow:Assets written to: /tmp/tmpc14_l70o/assets
INFO:tensorflow:Assets written to: /tmp/tmpc14_l70o/assets
2021-11-15 12:17:49.538814: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:363] Ignored output_format.
2021-11-15 12:17:49.538850: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:366] Ignored drop_control_dependency.
WARNING:absl:Buffer deduplication procedure will be skipped when flatbuffer library is not properly loaded
{'decode': {'inputs': ['x'], 'outputs': ['decoded_result']}, 'encode': {'inputs': ['x'], 'outputs': ['encoded_result']} }
2021-11-15 12:17:49.572773: W tensorflow/compiler/mlir/lite/flatbuffer_export.cc:1891] TFLite interpreter needs to link Flex delegate in order to run the model since it contains the following Select TFop(s):
Flex ops: FlexAsString, FlexStringToNumber
Details:
    tf.AsString(tensor<?xf32>) -> (tensor<?x!tf_type.string>) : {device = "", fill = "", precision = -1 : i64, scientific = false, shortest = false, width = -1 : i64}
    tf.StringToNumber(tensor<?x!tf_type.string>) -> (tensor<?xf32>) : {device = "", out_type = f32}
See instructions: https://www.tensorflow.org/lite/guide/ops_select

İmzaları Çalıştır

TensorFlow çıkarım API'leri, imza tabanlı yürütmeleri destekler:

  • Giriş/çıkış tensörlerine imza ile belirtilen giriş ve çıkışların adları aracılığıyla erişim.
  • İmza anahtarıyla tanımlanan grafiğin her giriş noktasını ayrı ayrı çalıştırma.
  • SavedModel'in başlatma prosedürü için destek.

Java, C++ ve Python dili bağlamaları şu anda mevcuttur. Aşağıdaki bölümler örneğine bakın.

Java

try (Interpreter interpreter = new Interpreter(file_of_tensorflowlite_model)) {
  // Run encoding signature.
  Map<String, Object> inputs = new HashMap<>();
  inputs.put("x", input);
  Map<String, Object> outputs = new HashMap<>();
  outputs.put("encoded_result", encoded_result);
  interpreter.runSignature(inputs, outputs, "encode");

  // Run decoding signature.
  Map<String, Object> inputs = new HashMap<>();
  inputs.put("x", encoded_result);
  Map<String, Object> outputs = new HashMap<>();
  outputs.put("decoded_result", decoded_result);
  interpreter.runSignature(inputs, outputs, "decode");
}

C++

SignatureRunner* encode_runner =
    interpreter->GetSignatureRunner("encode");
encode_runner->ResizeInputTensor("x", {100});
encode_runner->AllocateTensors();

TfLiteTensor* input_tensor = encode_runner->input_tensor("x");
float* input = input_tensor->data.f;
// Fill `input`.

encode_runner->Invoke();

const TfLiteTensor* output_tensor = encode_runner->output_tensor(
    "encoded_result");
float* output = output_tensor->data.f;
// Access `output`.

piton

# Load the TFLite model in TFLite Interpreter
interpreter = tf.lite.Interpreter(model_content=tflite_model)

# Print the signatures from the converted model
signatures = interpreter.get_signature_list()
print('Signature:', signatures)

# encode and decode are callable with input as arguments.
encode = interpreter.get_signature_runner('encode')
decode = interpreter.get_signature_runner('decode')

# 'encoded' and 'decoded' are dictionaries with all outputs from the inference.
input = tf.constant([1, 2, 3], dtype=tf.float32)
print('Input:', input)
encoded = encode(x=input)
print('Encoded result:', encoded)
decoded = decode(x=encoded['encoded_result'])
print('Decoded result:', decoded)
Signature: {'decode': {'inputs': ['x'], 'outputs': ['decoded_result']}, 'encode': {'inputs': ['x'], 'outputs': ['encoded_result']} }
Input: tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32)
Encoded result: {'encoded_result': array([b'1.000000', b'2.000000', b'3.000000'], dtype=object)}
Decoded result: {'decoded_result': array([1., 2., 3.], dtype=float32)}

Bilinen sınırlamalar

  • TFLite yorumlayıcısı iş parçacığı güvenliğini garanti etmediğinden, aynı yorumlayıcının imza yürütücüleri aynı anda yürütülmez.
  • C/iOS/Swift desteği henüz mevcut değil.

güncellemeler

  • Sürüm 2.7
    • Çoklu imza özelliği uygulanır.
    • İkinci sürümdeki tüm dönüştürücü API'leri, imza etkin TensorFlow Lite modelleri oluşturur.
  • Sürüm 2.5
    • İmza özelliği aracılığıyla kullanılabilir from_saved_model çevirici API.