Attend the Women in ML Symposium on December 7 Register now
Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.

TensorFlow Lite sử dụng các mô hình TensorFlow được chuyển đổi thành định dạng mô hình học máy (ML) nhỏ hơn, hiệu quả hơn. Bạn có thể sử dụng các mô hình được đào tạo trước với TensorFlow Lite, sửa đổi các mô hình hiện có hoặc xây dựng các mô hình TensorFlow của riêng bạn và sau đó chuyển đổi chúng sang định dạng TensorFlow Lite. Mô hình TensorFlow Lite có thể thực hiện hầu hết mọi tác vụ mà mô hình TensorFlow thông thường có thể làm: phát hiện đối tượng, xử lý ngôn ngữ tự nhiên, nhận dạng mẫu, v.v. bằng cách sử dụng nhiều loại dữ liệu đầu vào bao gồm hình ảnh, video, âm thanh và văn bản.

Chuyển đến phần Chuyển đổi để biết thông tin về cách chạy mô hình của bạn với TensorFlow Lite.
Để có hướng dẫn về cách lấy các mô hình cho trường hợp sử dụng của bạn, hãy tiếp tục đọc .

Bạn không cần phải xây dựng mô hình TensorFlow Lite để bắt đầu sử dụng máy học trên thiết bị di động hoặc thiết bị cạnh. Nhiều mô hình đã được xây dựng và tối ưu hóa có sẵn để bạn sử dụng ngay trong ứng dụng của mình. Bạn có thể bắt đầu bằng việc sử dụng các mô hình được đào tạo trước trong TensorFlow Lite và chuyển sang xây dựng các mô hình tùy chỉnh theo thời gian, như sau:

  1. Bắt đầu phát triển các tính năng học máy với các mô hình đã được đào tạo.
  2. Sửa đổi các mô hình TensorFlow Lite hiện có bằng các công cụ như Trình tạo mô hình .
  3. Xây dựng mô hình tùy chỉnh bằng các công cụ TensorFlow và sau đó chuyển đổi nó thành TensorFlow Lite.

Nếu bạn đang cố gắng triển khai nhanh chóng các tính năng hoặc tác vụ tiện ích bằng máy học, bạn nên xem lại các trường hợp sử dụng được ML Kit hỗ trợ trước khi bắt đầu phát triển với TensorFlow Lite. Công cụ phát triển này cung cấp các API mà bạn có thể gọi trực tiếp từ các ứng dụng dành cho thiết bị di động để hoàn thành các tác vụ ML phổ biến như quét mã vạch và dịch trên thiết bị. Sử dụng phương pháp này có thể giúp bạn đạt được kết quả nhanh chóng. Tuy nhiên, ML Kit có các tùy chọn hạn chế để mở rộng khả năng của nó. Để biết thêm thông tin, hãy xem tài liệu dành cho nhà phát triển ML Kit .


Nếu việc xây dựng mô hình tùy chỉnh cho trường hợp sử dụng cụ thể là mục tiêu cuối cùng của bạn, bạn nên bắt đầu bằng việc phát triển và đào tạo mô hình TensorFlow hoặc mở rộng mô hình hiện có. Trước khi bắt đầu quá trình phát triển mô hình của mình, bạn nên biết các ràng buộc đối với các mô hình TensorFlow Lite và xây dựng mô hình của bạn với những ràng buộc sau:

  • Khả năng tính toán hạn chế
  • Kích thước của các mô hình
  • Kích thước của dữ liệu
  • Các hoạt động TensorFlow được hỗ trợ

Để biết thêm chi tiết về từng ràng buộc này, hãy xem các quy tắc thiết kế mô hình trong phần Tổng quan về xây dựng mô hình. Để biết thêm thông tin về cách xây dựng các mô hình hiệu quả, tương thích, hiệu suất cao cho TensorFlow Lite, hãy xem Các phương pháp hay nhất về hiệu suất.

Tìm hiểu cách chọn mô hình ML được đào tạo trước để sử dụng với TensorFlow Lite.
Sử dụng TensorFlow Lite Model Maker để sửa đổi các mô hình bằng cách sử dụng dữ liệu đào tạo của bạn.
Tìm hiểu cách tạo mô hình TensorFlow tùy chỉnh để sử dụng với TensorFlow Lite.