Diese Seite wurde von der Cloud Translation API übersetzt.
Switch to English

Trainieren und servieren Sie ein TensorFlow-Modell mit TensorFlow Serving

In diesem Handbuch wird ein neuronales Netzwerkmodell trainiert, um Bilder von Kleidung wie Turnschuhen und Hemden zu klassifizieren, das trainierte Modell zu speichern und es dann mit TensorFlow Serving bereitzustellen . Der Schwerpunkt liegt auf dem TensorFlow-Serving und nicht auf der Modellierung und Schulung in TensorFlow. Ein vollständiges Beispiel, das sich auf die Modellierung und Schulung konzentriert, finden Sie im Beispiel für die grundlegende Klassifizierung .

In diesem Handbuch wird tf.keras verwendet , eine übergeordnete API zum Erstellen und Trainieren von Modellen in TensorFlow.

import sys

# Confirm that we're using Python 3
assert sys.version_info.major is 3, 'Oops, not running Python 3. Use Runtime > Change runtime type'
# TensorFlow and tf.keras
print("Installing dependencies for Colab environment")
!pip install -Uq grpcio==1.26.0

import tensorflow as tf
from tensorflow import keras

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import os
import subprocess

print('TensorFlow version: {}'.format(tf.__version__))
Installing dependencies for Colab environment
[K     |████████████████████████████████| 2.4MB 4.6MB/s 
[?25hInstalling TensorFlow
TensorFlow 2.x selected.
TensorFlow version: 2.1.0-rc1

Erstellen Sie Ihr Modell

Importieren Sie den Fashion MNIST-Datensatz

In diesem Handbuch wird der Fashion MNIST- Datensatz verwendet, der 70.000 Graustufenbilder in 10 Kategorien enthält. Die Bilder zeigen einzelne Kleidungsstücke in niedriger Auflösung (28 x 28 Pixel), wie hier zu sehen:

Mode MNIST Sprite
Abbildung 1. Fashion-MNIST-Beispiele (von Zalando, MIT-Lizenz).

Fashion MNIST ist als Ersatz für den klassischen MNIST- Datensatz gedacht, der häufig als "Hallo Welt" von Programmen für maschinelles Lernen für Computer Vision verwendet wird. Sie können direkt von TensorFlow aus auf den Fashion MNIST zugreifen. Importieren und laden Sie einfach die Daten.

fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

# scale the values to 0.0 to 1.0
train_images = train_images / 255.0
test_images = test_images / 255.0

# reshape for feeding into the model
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

print('\ntrain_images.shape: {}, of {}'.format(train_images.shape, train_images.dtype))
print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
32768/29515 [=================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz
26427392/26421880 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
8192/5148 [===============================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
4423680/4422102 [==============================] - 0s 0us/step

train_images.shape: (60000, 28, 28, 1), of float64
test_images.shape: (10000, 28, 28, 1), of float64

Trainieren und bewerten Sie Ihr Modell

Verwenden wir das einfachste mögliche CNN, da wir uns nicht auf den Modellierungsteil konzentrieren.

model = keras.Sequential([
  keras.layers.Conv2D(input_shape=(28,28,1), filters=8, kernel_size=3, 
                      strides=2, activation='relu', name='Conv1'),
  keras.layers.Flatten(),
  keras.layers.Dense(10, activation=tf.nn.softmax, name='Softmax')
])
model.summary()

testing = False
epochs = 5

model.compile(optimizer='adam', 
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=epochs)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print('\nTest accuracy: {}'.format(test_acc))
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
Conv1 (Conv2D)               (None, 13, 13, 8)         80        
_________________________________________________________________
flatten (Flatten)            (None, 1352)              0         
_________________________________________________________________
Softmax (Dense)              (None, 10)                13530     
=================================================================
Total params: 13,610
Trainable params: 13,610
Non-trainable params: 0
_________________________________________________________________
Train on 60000 samples
Epoch 1/5
60000/60000 [==============================] - 11s 185us/sample - loss: 0.5466 - accuracy: 0.8087
Epoch 2/5
60000/60000 [==============================] - 5s 79us/sample - loss: 0.4032 - accuracy: 0.8580
Epoch 3/5
60000/60000 [==============================] - 5s 76us/sample - loss: 0.3613 - accuracy: 0.8712
Epoch 4/5
60000/60000 [==============================] - 5s 75us/sample - loss: 0.3406 - accuracy: 0.8797
Epoch 5/5
60000/60000 [==============================] - 4s 75us/sample - loss: 0.3247 - accuracy: 0.8848
10000/10000 [==============================] - 1s 73us/sample - loss: 0.3510 - accuracy: 0.8747

Test accuracy: 0.8747000098228455

Speichern Sie Ihr Modell

Um unser trainiertes Modell in TensorFlow Serving zu laden, müssen wir es zuerst im SavedModel- Format speichern. Dadurch wird eine Protobuf-Datei in einer genau definierten Verzeichnishierarchie erstellt und eine Versionsnummer hinzugefügt. Mit TensorFlow Serving können wir auswählen, welche Version eines Modells oder "servable" wir verwenden möchten, wenn wir Inferenzanforderungen stellen. Jede Version wird unter dem angegebenen Pfad in ein anderes Unterverzeichnis exportiert.

# Fetch the Keras session and save the model
# The signature definition is defined by the input and output tensors,
# and stored with the default serving key
import tempfile

MODEL_DIR = tempfile.gettempdir()
version = 1
export_path = os.path.join(MODEL_DIR, str(version))
print('export_path = {}\n'.format(export_path))

tf.keras.models.save_model(
    model,
    export_path,
    overwrite=True,
    include_optimizer=True,
    save_format=None,
    signatures=None,
    options=None
)

print('\nSaved model:')
!ls -l {export_path}
export_path = /tmp/1

Warning:tensorflow:From /tensorflow-2.1.0/python3.6/tensorflow_core/python/ops/resource_variable_ops.py:1786: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.
INFO:tensorflow:Assets written to: /tmp/1/assets

Saved model:
total 84
drwxr-xr-x 2 root root  4096 Jan  7 23:15 assets
-rw-r--r-- 1 root root 74086 Jan  7 23:15 saved_model.pb
drwxr-xr-x 2 root root  4096 Jan  7 23:15 variables

Untersuchen Sie Ihr gespeichertes Modell

Wir werden das Befehlszeilenprogramm saved_model_cli , um die MetaGraphDefs (die Modelle) und SignatureDefs (die Methoden, die Sie aufrufen können) in unserem SavedModel zu betrachten. Weitere Informationen zur SavedModel-CLI finden Sie im TensorFlow-Handbuch.

saved_model_cli show --dir {export_path} --all

MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['__saved_model_init_op']:
  The given SavedModel SignatureDef contains the following input(s):
  The given SavedModel SignatureDef contains the following output(s):
    outputs['__saved_model_init_op'] tensor_info:
        dtype: DT_INVALID
        shape: unknown_rank
        name: NoOp
  Method name is: 

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['Conv1_input'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 28, 28, 1)
        name: serving_default_Conv1_input:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['Softmax'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 10)
        name: StatefulPartitionedCall:0
  Method name is: tensorflow/serving/predict
WARNING:tensorflow:From /tensorflow-2.1.0/python3.6/tensorflow_core/python/ops/resource_variable_ops.py:1786: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.

Defined Functions:
  Function Name: '__call__'
    Option #1
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None
    Option #2
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None
    Option #3
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #4
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None

  Function Name: '_default_save_signature'
    Option #1
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')

  Function Name: 'call_and_return_all_conditional_losses'
    Option #1
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None
    Option #2
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #3
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #4
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None

Das sagt viel über unser Modell aus! In diesem Fall haben wir gerade unser Modell trainiert, sodass wir die Ein- und Ausgänge bereits kennen. Wenn wir dies nicht tun, wäre dies eine wichtige Information. Es sagt uns nicht alles, wie zum Beispiel die Tatsache, dass es sich um Graustufenbilddaten handelt, aber es ist ein guter Anfang.

Servieren Sie Ihr Modell mit TensorFlow Serving

TensorFlow Serving-Verteilungs-URI als Paketquelle hinzufügen:

Wir bereiten die Installation von TensorFlow Serving mit Aptitude vor, da dieses Colab in einer Debian-Umgebung ausgeführt wird. Wir werden das tensorflow-model-server Paket zur Liste der Pakete hinzufügen, die Aptitude kennt. Beachten Sie, dass wir als root ausgeführt werden.

# This is the same as you would do from your command line, but without the [arch=amd64], and no sudo
# You would instead do:
# echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && \
# curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -

!echo "deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | tee /etc/apt/sources.list.d/tensorflow-serving.list && \
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | apt-key add -
!apt update
deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  2943  100  2943    0     0  11496      0 --:--:-- --:--:-- --:--:-- 11496
OK
Get:1 http://storage.googleapis.com/tensorflow-serving-apt stable InRelease [3,012 B]
Get:2 https://cloud.r-project.org/bin/linux/ubuntu bionic-cran35/ InRelease [3,626 B]
Ign:3 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64  InRelease
Ign:4 https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64  InRelease
Hit:5 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64  Release
Get:6 https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64  Release [564 B]
Get:7 https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64  Release.gpg [833 B]
Hit:8 http://ppa.launchpad.net/graphics-drivers/ppa/ubuntu bionic InRelease
Hit:9 http://archive.ubuntu.com/ubuntu bionic InRelease
Get:10 http://security.ubuntu.com/ubuntu bionic-security InRelease [88.7 kB]
Get:11 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 Packages [354 B]
Get:12 https://cloud.r-project.org/bin/linux/ubuntu bionic-cran35/ Packages [81.6 kB]
Get:13 http://archive.ubuntu.com/ubuntu bionic-updates InRelease [88.7 kB]
Get:14 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server-universal amd64 Packages [364 B]
Get:15 http://ppa.launchpad.net/marutter/c2d4u3.5/ubuntu bionic InRelease [15.4 kB]
Get:17 https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64  Packages [30.4 kB]
Get:18 http://archive.ubuntu.com/ubuntu bionic-backports InRelease [74.6 kB]
Get:19 http://ppa.launchpad.net/marutter/c2d4u3.5/ubuntu bionic/main Sources [1,749 kB]
Get:20 http://security.ubuntu.com/ubuntu bionic-security/universe amd64 Packages [796 kB]
Get:21 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 Packages [1,073 kB]
Get:22 http://security.ubuntu.com/ubuntu bionic-security/main amd64 Packages [776 kB]
Get:23 http://security.ubuntu.com/ubuntu bionic-security/restricted amd64 Packages [21.3 kB]
Get:24 http://archive.ubuntu.com/ubuntu bionic-updates/multiverse amd64 Packages [10.8 kB]
Get:25 http://archive.ubuntu.com/ubuntu bionic-updates/universe amd64 Packages [1,324 kB]
Get:26 http://archive.ubuntu.com/ubuntu bionic-updates/restricted amd64 Packages [35.5 kB]
Get:27 http://ppa.launchpad.net/marutter/c2d4u3.5/ubuntu bionic/main amd64 Packages [844 kB]
Fetched 7,019 kB in 4s (1,913 kB/s)
Reading package lists... Done
Building dependency tree       
Reading state information... Done
21 packages can be upgraded. Run 'apt list --upgradable' to see them.

Installieren Sie TensorFlow Serving

Das ist alles was Sie brauchen - eine Kommandozeile!

apt-get install tensorflow-model-server
Reading package lists... Done
Building dependency tree       
Reading state information... Done
The following package was automatically installed and is no longer required:
  libnvidia-common-430
Use 'apt autoremove' to remove it.
The following NEW packages will be installed:
  tensorflow-model-server
0 upgraded, 1 newly installed, 0 to remove and 21 not upgraded.
Need to get 140 MB of archives.
After this operation, 0 B of additional disk space will be used.
Get:1 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 tensorflow-model-server all 2.0.0 [140 MB]
Fetched 140 MB in 2s (78.8 MB/s)
Selecting previously unselected package tensorflow-model-server.
(Reading database ... 145674 files and directories currently installed.)
Preparing to unpack .../tensorflow-model-server_2.0.0_all.deb ...
Unpacking tensorflow-model-server (2.0.0) ...
Setting up tensorflow-model-server (2.0.0) ...

Starten Sie TensorFlow Serving

Hier starten wir TensorFlow Serving und laden unser Modell. Nach dem Laden können wir mit REST Inferenzanforderungen stellen. Es gibt einige wichtige Parameter:

  • rest_api_port : Der Port, den Sie für REST-Anforderungen verwenden.
  • model_name : Sie verwenden dies in der URL von REST-Anforderungen. Es kann alles sein.
  • model_base_path : Dies ist der Pfad zu dem Verzeichnis, in dem Sie Ihr Modell gespeichert haben.
os.environ["MODEL_DIR"] = MODEL_DIR
nohup tensorflow_model_server \
  --rest_api_port=8501 \
  --model_name=fashion_model \
  --model_base_path="${MODEL_DIR}" >server.log 2>&1

Starting job # 0 in a separate thread.

tail server.log
[warn] getaddrinfo: address family for nodename not supported
[evhttp_server.cc : 238] NET_LOG: Entering the event loop ...

Stellen Sie in TensorFlow Serving eine Anfrage an Ihr Modell

Schauen wir uns zunächst ein zufälliges Beispiel aus unseren Testdaten an.

def show(idx, title):
  plt.figure()
  plt.imshow(test_images[idx].reshape(28,28))
  plt.axis('off')
  plt.title('\n\n{}'.format(title), fontdict={'size': 16})

import random
rando = random.randint(0,len(test_images)-1)
show(rando, 'An Example Image: {}'.format(class_names[test_labels[rando]]))

png

Ok, das sieht interessant aus. Wie schwer ist das für dich zu erkennen? Lassen Sie uns nun das JSON-Objekt für einen Stapel von drei Inferenzanforderungen erstellen und sehen, wie gut unser Modell Dinge erkennt:

import json
data = json.dumps({"signature_name": "serving_default", "instances": test_images[0:3].tolist()})
print('Data: {} ... {}'.format(data[:50], data[len(data)-52:]))
Data: {"signature_name": "serving_default", "instances": ...  [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]]]}

REST-Anfragen stellen

Neueste Version des Servable

Wir senden eine Vorhersageanforderung als POST an den REST-Endpunkt unseres Servers und übergeben drei Beispiele. Wir werden unseren Server bitten, uns die neueste Version unseres Servable zu geben, indem wir keine bestimmte Version angeben.

!pip install -q requests

import requests
headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']

show(0, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
  class_names[np.argmax(predictions[0])], np.argmax(predictions[0]), class_names[test_labels[0]], test_labels[0]))

png

Eine bestimmte Version des Servable

Lassen Sie uns nun eine bestimmte Version unseres Servable angeben. Da wir nur eine haben, wählen wir Version 1. Wir werden uns auch alle drei Ergebnisse ansehen.

headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model/versions/1:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']

for i in range(0,3):
  show(i, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
    class_names[np.argmax(predictions[i])], np.argmax(predictions[i]), class_names[test_labels[i]], test_labels[i]))

png

png

png