Fragen zu TFX? Besuchen Sie uns bei Google I / O!

Trainieren und servieren Sie ein TensorFlow-Modell mit TensorFlow Serving

In diesem Handbuch wird ein neuronales Netzwerkmodell trainiert, um Bilder von Kleidung wie Turnschuhen und Hemden zu klassifizieren, das trainierte Modell zu speichern und es dann mit TensorFlow Serving bereitzustellen . Der Schwerpunkt liegt auf dem TensorFlow-Serving und nicht auf der Modellierung und Schulung in TensorFlow. Ein vollständiges Beispiel, das sich auf die Modellierung und Schulung konzentriert, finden Sie im Beispiel für die grundlegende Klassifizierung .

In diesem Handbuch wird tf.keras verwendet , eine übergeordnete API zum Erstellen und Trainieren von Modellen in TensorFlow.

import sys

# Confirm that we're using Python 3
assert sys.version_info.major is 3, 'Oops, not running Python 3. Use Runtime > Change runtime type'
# TensorFlow and tf.keras
print("Installing dependencies for Colab environment")
!pip install -Uq grpcio==1.26.0

import tensorflow as tf
from tensorflow import keras

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import os
import subprocess

print('TensorFlow version: {}'.format(tf.__version__))

Erstellen Sie Ihr Modell

Importieren Sie den Fashion MNIST-Datensatz

In diesem Handbuch wird der Fashion MNIST- Datensatz verwendet, der 70.000 Graustufenbilder in 10 Kategorien enthält. Die Bilder zeigen einzelne Kleidungsstücke in niedriger Auflösung (28 x 28 Pixel), wie hier zu sehen:

Mode MNIST Sprite
Abbildung 1. Fashion-MNIST-Beispiele (von Zalando, MIT-Lizenz).

Fashion MNIST ist als Ersatz für den klassischen MNIST- Datensatz gedacht, der häufig als "Hallo Welt" von Programmen für maschinelles Lernen für Computer Vision verwendet wird. Sie können direkt von TensorFlow aus auf den Fashion MNIST zugreifen. Importieren und laden Sie einfach die Daten.

fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

# scale the values to 0.0 to 1.0
train_images = train_images / 255.0
test_images = test_images / 255.0

# reshape for feeding into the model
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

print('\ntrain_images.shape: {}, of {}'.format(train_images.shape, train_images.dtype))
print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
32768/29515 [=================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz
26427392/26421880 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
8192/5148 [===============================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
4423680/4422102 [==============================] - 0s 0us/step

train_images.shape: (60000, 28, 28, 1), of float64
test_images.shape: (10000, 28, 28, 1), of float64

Trainieren und bewerten Sie Ihr Modell

Verwenden wir das einfachste mögliche CNN, da wir uns nicht auf den Modellierungsteil konzentrieren.

model = keras.Sequential([
  keras.layers.Conv2D(input_shape=(28,28,1), filters=8, kernel_size=3, 
                      strides=2, activation='relu', name='Conv1'),
  keras.layers.Flatten(),
  keras.layers.Dense(10, name='Dense')
])
model.summary()

testing = False
epochs = 5

model.compile(optimizer='adam', 
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(train_images, train_labels, epochs=epochs)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print('\nTest accuracy: {}'.format(test_acc))
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
Conv1 (Conv2D)               (None, 13, 13, 8)         80        
_________________________________________________________________
flatten (Flatten)            (None, 1352)              0         
_________________________________________________________________
Dense (Dense)                (None, 10)                13530     
=================================================================
Total params: 13,610
Trainable params: 13,610
Non-trainable params: 0
_________________________________________________________________
Epoch 1/5
1875/1875 [==============================] - 13s 2ms/step - loss: 0.7546 - sparse_categorical_accuracy: 0.7457
Epoch 2/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.4254 - sparse_categorical_accuracy: 0.8521
Epoch 3/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3812 - sparse_categorical_accuracy: 0.8668
Epoch 4/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3557 - sparse_categorical_accuracy: 0.8770
Epoch 5/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3415 - sparse_categorical_accuracy: 0.8795
313/313 [==============================] - 1s 2ms/step - loss: 0.3699 - sparse_categorical_accuracy: 0.8694

Test accuracy: 0.8694000244140625

Speichern Sie Ihr Modell

Um unser trainiertes Modell in TensorFlow Serving zu laden, müssen wir es zuerst im SavedModel- Format speichern. Dadurch wird eine Protobuf-Datei in einer genau definierten Verzeichnishierarchie erstellt und eine Versionsnummer hinzugefügt. Mit TensorFlow Serving können wir auswählen, welche Version eines Modells oder "servable" wir verwenden möchten, wenn wir Inferenzanforderungen stellen. Jede Version wird unter dem angegebenen Pfad in ein anderes Unterverzeichnis exportiert.

# Fetch the Keras session and save the model
# The signature definition is defined by the input and output tensors,
# and stored with the default serving key
import tempfile

MODEL_DIR = tempfile.gettempdir()
version = 1
export_path = os.path.join(MODEL_DIR, str(version))
print('export_path = {}\n'.format(export_path))

tf.keras.models.save_model(
    model,
    export_path,
    overwrite=True,
    include_optimizer=True,
    save_format=None,
    signatures=None,
    options=None
)

print('\nSaved model:')
!ls -l {export_path}
export_path = /tmp/1

INFO:tensorflow:Assets written to: /tmp/1/assets

Saved model:
total 88
drwxr-xr-x 2 kbuilder kbuilder  4096 Mar  9 10:10 assets
-rw-rw-r-- 1 kbuilder kbuilder 78123 Mar  9 10:10 saved_model.pb
drwxr-xr-x 2 kbuilder kbuilder  4096 Mar  9 10:10 variables

Untersuchen Sie Ihr gespeichertes Modell

Wir werden das Befehlszeilenprogramm saved_model_cli , um die MetaGraphDefs (die Modelle) und SignatureDefs (die Methoden, die Sie aufrufen können) in unserem SavedModel zu betrachten. Weitere Informationen zur SavedModel-CLI finden Sie im TensorFlow-Handbuch.

saved_model_cli show --dir {export_path} --all
2021-03-09 10:10:12.685464: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0

MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['__saved_model_init_op']:
  The given SavedModel SignatureDef contains the following input(s):
  The given SavedModel SignatureDef contains the following output(s):
    outputs['__saved_model_init_op'] tensor_info:
        dtype: DT_INVALID
        shape: unknown_rank
        name: NoOp
  Method name is: 

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['Conv1_input'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 28, 28, 1)
        name: serving_default_Conv1_input:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['Dense'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 10)
        name: StatefulPartitionedCall:0
  Method name is: tensorflow/serving/predict

Defined Functions:
  Function Name: '__call__'
    Option #1
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #2
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #3
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None
    Option #4
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None

  Function Name: '_default_save_signature'
    Option #1
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')

  Function Name: 'call_and_return_all_conditional_losses'
    Option #1
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #2
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None
    Option #3
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #4
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None

Das sagt viel über unser Modell aus! In diesem Fall haben wir gerade unser Modell trainiert, sodass wir die Ein- und Ausgänge bereits kennen. Wenn wir dies nicht tun, wäre dies eine wichtige Information. Es sagt uns nicht alles, wie zum Beispiel die Tatsache, dass es sich um Graustufenbilddaten handelt, aber es ist ein guter Anfang.

Servieren Sie Ihr Modell mit TensorFlow Serving

Hinzufügen des TensorFlow Serving-Verteilungs-URI als Paketquelle:

Wir bereiten die Installation von TensorFlow Serving mit Aptitude vor, da dieses Colab in einer Debian-Umgebung ausgeführt wird. Wir werden das tensorflow-model-server Paket zur Liste der Pakete hinzufügen, die Aptitude kennt. Beachten Sie, dass wir als root ausgeführt werden.

import sys
# We need sudo prefix if not on a Google Colab.
if 'google.colab' not in sys.modules:
  SUDO_IF_NEEDED = 'sudo'
else:
  SUDO_IF_NEEDED = ''
# This is the same as you would do from your command line, but without the [arch=amd64], and no sudo
# You would instead do:
# echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && \
# curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -

!echo "deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | {SUDO_IF_NEEDED} tee /etc/apt/sources.list.d/tensorflow-serving.list && \
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | {SUDO_IF_NEEDED} apt-key add -
!{SUDO_IF_NEEDED} apt update
deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  2943  100  2943    0     0  15822      0 --:--:-- --:--:-- --:--:-- 15822
OK
Hit:1 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic InRelease
Hit:2 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates InRelease
Hit:3 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-backports InRelease
Hit:4 http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease
Get:5 https://packages.cloud.google.com/apt eip-cloud-bionic InRelease [5419 B]
Hit:6 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64  InRelease
Hit:7 https://nvidia.github.io/nvidia-container-runtime/ubuntu18.04/amd64  InRelease
Get:8 https://nvidia.github.io/nvidia-docker/ubuntu18.04/amd64  InRelease [1129 B]
Get:9 http://storage.googleapis.com/tensorflow-serving-apt stable InRelease [3012 B]
Hit:10 http://archive.canonical.com/ubuntu bionic InRelease
Hit:11 http://security.ubuntu.com/ubuntu bionic-security InRelease
Get:12 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 Packages [340 B]
Get:13 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server-universal amd64 Packages [348 B]
Fetched 10.2 kB in 1s (7051 B/s)



114 packages can be upgraded. Run 'apt list --upgradable' to see them.

Installieren Sie TensorFlow Serving

Das ist alles was Sie brauchen - eine Kommandozeile!

{SUDO_IF_NEEDED} apt-get install tensorflow-model-server
The following packages were automatically installed and are no longer required:
  adwaita-icon-theme ca-certificates-java dconf-gsettings-backend
  dconf-service default-jre default-jre-headless dkms fonts-dejavu-extra
  freeglut3 freeglut3-dev g++-6 glib-networking glib-networking-common
  glib-networking-services gsettings-desktop-schemas gtk-update-icon-cache
  hicolor-icon-theme humanity-icon-theme java-common libaccinj64-9.1
  libasound2 libasound2-data libasyncns0 libatk-bridge2.0-0
  libatk-wrapper-java libatk-wrapper-java-jni libatk1.0-0 libatk1.0-data
  libatspi2.0-0 libavahi-client3 libavahi-common-data libavahi-common3
  libcairo-gobject2 libcolord2 libcroco3 libcudart9.1 libcufft9.1 libcufftw9.1
  libcups2 libcurand9.1 libcusolver9.1 libcusparse9.1 libdconf1 libdrm-amdgpu1
  libdrm-dev libdrm-intel1 libdrm-nouveau2 libdrm-radeon1 libegl-mesa0 libegl1
  libegl1-mesa libepoxy0 libflac8 libfontenc1 libgbm1 libgdk-pixbuf2.0-0
  libgdk-pixbuf2.0-common libgif7 libgl1 libgl1-mesa-dev libgl1-mesa-dri
  libglapi-mesa libgles1 libgles2 libglu1-mesa libglu1-mesa-dev
  libglvnd-core-dev libglvnd-dev libglvnd0 libglx-mesa0 libglx0 libgtk-3-0
  libgtk-3-common libgtk2.0-0 libgtk2.0-common libice-dev libjansson4
  libjson-glib-1.0-0 libjson-glib-1.0-common liblcms2-2 libllvm9 libnppc9.1
  libnppial9.1 libnppicc9.1 libnppicom9.1 libnppidei9.1 libnppif9.1
  libnppig9.1 libnppim9.1 libnppist9.1 libnppisu9.1 libnppitc9.1 libnpps9.1
  libnvrtc9.1 libnvtoolsext1 libnvvm3 libogg0 libopengl0 libpciaccess0
  libpcsclite1 libproxy1v5 libpthread-stubs0-dev libpulse0 librest-0.7-0
  librsvg2-2 librsvg2-common libsensors4 libsm-dev libsndfile1
  libsoup-gnome2.4-1 libsoup2.4-1 libstdc++-6-dev libthrust-dev libvdpau-dev
  libvdpau1 libvorbis0a libvorbisenc2 libwayland-client0 libwayland-cursor0
  libwayland-egl1 libwayland-server0 libx11-dev libx11-xcb-dev libx11-xcb1
  libxau-dev libxcb-dri2-0 libxcb-dri2-0-dev libxcb-dri3-0 libxcb-dri3-dev
  libxcb-glx0 libxcb-glx0-dev libxcb-present-dev libxcb-present0 libxcb-randr0
  libxcb-randr0-dev libxcb-render0-dev libxcb-shape0 libxcb-shape0-dev
  libxcb-sync-dev libxcb-sync1 libxcb-xfixes0 libxcb-xfixes0-dev libxcb1-dev
  libxcomposite1 libxcursor1 libxdamage-dev libxdamage1 libxdmcp-dev
  libxext-dev libxfixes-dev libxfixes3 libxfont2 libxft2 libxi-dev libxi6
  libxinerama1 libxkbcommon0 libxkbfile1 libxmu-dev libxmu-headers libxnvctrl0
  libxrandr2 libxshmfence-dev libxshmfence1 libxt-dev libxtst6 libxv1
  libxxf86dga1 libxxf86vm-dev libxxf86vm1 linux-gcp-5.3-headers-5.3.0-1030
  linux-gcp-headers-5.0.0-1026 linux-headers-5.3.0-1030-gcp
  linux-image-5.3.0-1030-gcp linux-modules-5.3.0-1030-gcp
  linux-modules-extra-5.3.0-1030-gcp mesa-common-dev ocl-icd-libopencl1
  ocl-icd-opencl-dev opencl-c-headers openjdk-11-jre openjdk-11-jre-headless
  openjdk-8-jre openjdk-8-jre-headless pkg-config policykit-1-gnome
  python3-xkit screen-resolution-extra ubuntu-mono x11-utils x11-xkb-utils
  x11proto-core-dev x11proto-damage-dev x11proto-dev x11proto-fixes-dev
  x11proto-input-dev x11proto-xext-dev x11proto-xf86vidmode-dev
  xorg-sgml-doctools xserver-common xserver-xorg-core-hwe-18.04 xtrans-dev
Use 'sudo apt autoremove' to remove them.
The following NEW packages will be installed:
  tensorflow-model-server
0 upgraded, 1 newly installed, 0 to remove and 114 not upgraded.
Need to get 223 MB of archives.
After this operation, 0 B of additional disk space will be used.
Get:1 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 tensorflow-model-server all 2.4.1 [223 MB]
Fetched 223 MB in 6s (40.3 MB/s)
Selecting previously unselected package tensorflow-model-server.
(Reading database ... 242337 files and directories currently installed.)
Preparing to unpack .../tensorflow-model-server_2.4.1_all.deb ...
Unpacking tensorflow-model-server (2.4.1) ...
Setting up tensorflow-model-server (2.4.1) ...

Starten Sie TensorFlow Serving

Hier starten wir TensorFlow Serving und laden unser Modell. Nach dem Laden können wir mit REST Inferenzanforderungen stellen. Es gibt einige wichtige Parameter:

  • rest_api_port : Der Port, den Sie für REST-Anforderungen verwenden.
  • model_name : Dies wird in der URL von REST-Anforderungen verwendet. Es kann alles sein.
  • model_base_path : Dies ist der Pfad zu dem Verzeichnis, in dem Sie Ihr Modell gespeichert haben.
os.environ["MODEL_DIR"] = MODEL_DIR
nohup tensorflow_model_server \
  --rest_api_port=8501 \
  --model_name=fashion_model \
  --model_base_path="${MODEL_DIR}" >server.log 2>&1
tail server.log

Stellen Sie in TensorFlow Serving eine Anfrage an Ihr Modell

Schauen wir uns zunächst ein zufälliges Beispiel aus unseren Testdaten an.

def show(idx, title):
  plt.figure()
  plt.imshow(test_images[idx].reshape(28,28))
  plt.axis('off')
  plt.title('\n\n{}'.format(title), fontdict={'size': 16})

import random
rando = random.randint(0,len(test_images)-1)
show(rando, 'An Example Image: {}'.format(class_names[test_labels[rando]]))

png

Ok, das sieht interessant aus. Wie schwer ist das für dich zu erkennen? Lassen Sie uns nun das JSON-Objekt für einen Stapel von drei Inferenzanforderungen erstellen und sehen, wie gut unser Modell Dinge erkennt:

import json
data = json.dumps({"signature_name": "serving_default", "instances": test_images[0:3].tolist()})
print('Data: {} ... {}'.format(data[:50], data[len(data)-52:]))
Data: {"signature_name": "serving_default", "instances": ...  [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]]]}

Stellen Sie REST-Anfragen

Neueste Version des Servable

Wir senden eine Vorhersageanforderung als POST an den REST-Endpunkt unseres Servers und übergeben drei Beispiele. Wir werden unseren Server bitten, uns die neueste Version unseres Servable zu geben, indem wir keine bestimmte Version angeben.

!pip install -q requests

import requests
headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']

show(0, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
  class_names[np.argmax(predictions[0])], np.argmax(predictions[0]), class_names[test_labels[0]], test_labels[0]))

Eine bestimmte Version des Servable

Lassen Sie uns nun eine bestimmte Version unseres Servable angeben. Da wir nur eine haben, wählen wir Version 1. Wir werden uns auch alle drei Ergebnisse ansehen.

headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model/versions/1:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']

for i in range(0,3):
  show(i, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
    class_names[np.argmax(predictions[i])], np.argmax(predictions[i]), class_names[test_labels[i]], test_labels[i]))

png

png

png