ML Community Day is November 9! Join us for updates from TensorFlow, JAX, and more Learn more

Simple TFX Pipeline Tutorial using Penguin dataset

A Short tutorial to run a simple TFX pipeline.

In this notebook-based tutorial, we will create and run a TFX pipeline for a simple classification model. The pipeline will consist of three essential TFX components: ExampleGen, Trainer and Pusher. The pipeline includes the most minimal ML workflow like importing data, training a model and exporting the trained model.

Please see Understanding TFX Pipelines to learn more about various concepts in TFX.

Set Up

We first need to install the TFX Python package and download the dataset which we will use for our model.

Upgrade Pip

To avoid upgrading Pip in a system when running locally, check to make sure that we are running in Colab. Local systems can of course be upgraded separately.

try:
  import colab
  !pip install --upgrade pip
except:
  pass

Install TFX

pip install -U tfx

Did you restart the runtime?

If you are using Google Colab, the first time that you run the cell above, you must restart the runtime by clicking above "RESTART RUNTIME" button or using "Runtime > Restart runtime ..." menu. This is because of the way that Colab loads packages.

Check the TensorFlow and TFX versions.

import tensorflow as tf
print('TensorFlow version: {}'.format(tf.__version__))
from tfx import v1 as tfx
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.5.1
TFX version: 1.2.0

Set up variables

There are some variables used to define a pipeline. You can customize these variables as you want. By default all output from the pipeline will be generated under the current directory.

import os

PIPELINE_NAME = "penguin-simple"

# Output directory to store artifacts generated from the pipeline.
PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME)
# Path to a SQLite DB file to use as an MLMD storage.
METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db')
# Output directory where created models from the pipeline will be exported.
SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME)

from absl import logging
logging.set_verbosity(logging.INFO)  # Set default logging level.

Prepare example data

We will download the example dataset for use in our TFX pipeline. The dataset we are using is Palmer Penguins dataset which is also used in other TFX examples.

There are four numeric features in this dataset:

  • culmen_length_mm
  • culmen_depth_mm
  • flipper_length_mm
  • body_mass_g

All features were already normalized to have range [0,1]. We will build a classification model which predicts the species of penguins.

Because TFX ExampleGen reads inputs from a directory, we need to create a directory and copy dataset to it.

import urllib.request
import tempfile

DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data')  # Create a temporary directory.
_data_url = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/data/labelled/penguins_processed.csv'
_data_filepath = os.path.join(DATA_ROOT, "data.csv")
urllib.request.urlretrieve(_data_url, _data_filepath)
('/tmp/tfx-datapv4iv0sk/data.csv', <http.client.HTTPMessage at 0x7fd1d8493550>)

Take a quick look at the CSV file.

head {_data_filepath}
species,culmen_length_mm,culmen_depth_mm,flipper_length_mm,body_mass_g
0,0.2545454545454545,0.6666666666666666,0.15254237288135594,0.2916666666666667
0,0.26909090909090905,0.5119047619047618,0.23728813559322035,0.3055555555555556
0,0.29818181818181805,0.5833333333333334,0.3898305084745763,0.1527777777777778
0,0.16727272727272732,0.7380952380952381,0.3559322033898305,0.20833333333333334
0,0.26181818181818167,0.892857142857143,0.3050847457627119,0.2638888888888889
0,0.24727272727272717,0.5595238095238096,0.15254237288135594,0.2569444444444444
0,0.25818181818181823,0.773809523809524,0.3898305084745763,0.5486111111111112
0,0.32727272727272727,0.5357142857142859,0.1694915254237288,0.1388888888888889
0,0.23636363636363636,0.9642857142857142,0.3220338983050847,0.3055555555555556

You should be able to see five values. species is one of 0, 1 or 2, and all other features should have values between 0 and 1.

Create a pipeline

TFX pipelines are defined using Python APIs. We will define a pipeline which consists of following three components.

  • CsvExampleGen: Reads in data files and convert them to TFX internal format for further processing. There are multiple ExampleGens for various formats. In this tutorial, we will use CsvExampleGen which takes CSV file input.
  • Trainer: Trains an ML model. Trainer component requires a model definition code from users. You can use TensorFlow APIs to specify how to train a model and save it in a _savedmodel format.
  • Pusher: Copies the trained model outside of the TFX pipeline. Pusher component can be thought of an deployment process of the trained ML model.

Before actually define the pipeline, we need to write a model code for the Trainer component first.

Write model training code

We will create a simple DNN model for classification using TensorFlow Keras API. This model training code will be saved to a separate file.

In this tutorial we will use Generic Trainer of TFX which support Keras-based models. You need to write a Python file containing run_fn function, which is the entrypoint for the Trainer component.

_trainer_module_file = 'penguin_trainer.py'
%%writefile {_trainer_module_file}

from typing import List
from absl import logging
import tensorflow as tf
from tensorflow import keras
from tensorflow_transform.tf_metadata import schema_utils

from tfx import v1 as tfx
from tfx_bsl.public import tfxio
from tensorflow_metadata.proto.v0 import schema_pb2

_FEATURE_KEYS = [
    'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g'
]
_LABEL_KEY = 'species'

_TRAIN_BATCH_SIZE = 20
_EVAL_BATCH_SIZE = 10

# Since we're not generating or creating a schema, we will instead create
# a feature spec.  Since there are a fairly small number of features this is
# manageable for this dataset.
_FEATURE_SPEC = {
    **{
        feature: tf.io.FixedLenFeature(shape=[1], dtype=tf.float32)
           for feature in _FEATURE_KEYS
       },
    _LABEL_KEY: tf.io.FixedLenFeature(shape=[1], dtype=tf.int64)
}


def _input_fn(file_pattern: List[str],
              data_accessor: tfx.components.DataAccessor,
              schema: schema_pb2.Schema,
              batch_size: int = 200) -> tf.data.Dataset:
  """Generates features and label for training.

  Args:
    file_pattern: List of paths or patterns of input tfrecord files.
    data_accessor: DataAccessor for converting input to RecordBatch.
    schema: schema of the input data.
    batch_size: representing the number of consecutive elements of returned
      dataset to combine in a single batch

  Returns:
    A dataset that contains (features, indices) tuple where features is a
      dictionary of Tensors, and indices is a single Tensor of label indices.
  """
  return data_accessor.tf_dataset_factory(
      file_pattern,
      tfxio.TensorFlowDatasetOptions(
          batch_size=batch_size, label_key=_LABEL_KEY),
      schema=schema).repeat()


def _build_keras_model() -> tf.keras.Model:
  """Creates a DNN Keras model for classifying penguin data.

  Returns:
    A Keras Model.
  """
  # The model below is built with Functional API, please refer to
  # https://www.tensorflow.org/guide/keras/overview for all API options.
  inputs = [keras.layers.Input(shape=(1,), name=f) for f in _FEATURE_KEYS]
  d = keras.layers.concatenate(inputs)
  for _ in range(2):
    d = keras.layers.Dense(8, activation='relu')(d)
  outputs = keras.layers.Dense(3)(d)

  model = keras.Model(inputs=inputs, outputs=outputs)
  model.compile(
      optimizer=keras.optimizers.Adam(1e-2),
      loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
      metrics=[keras.metrics.SparseCategoricalAccuracy()])

  model.summary(print_fn=logging.info)
  return model


# TFX Trainer will call this function.
def run_fn(fn_args: tfx.components.FnArgs):
  """Train the model based on given args.

  Args:
    fn_args: Holds args used to train the model as name/value pairs.
  """

  # This schema is usually either an output of SchemaGen or a manually-curated
  # version provided by pipeline author. A schema can also derived from TFT
  # graph if a Transform component is used. In the case when either is missing,
  # `schema_from_feature_spec` could be used to generate schema from very simple
  # feature_spec, but the schema returned would be very primitive.
  schema = schema_utils.schema_from_feature_spec(_FEATURE_SPEC)

  train_dataset = _input_fn(
      fn_args.train_files,
      fn_args.data_accessor,
      schema,
      batch_size=_TRAIN_BATCH_SIZE)
  eval_dataset = _input_fn(
      fn_args.eval_files,
      fn_args.data_accessor,
      schema,
      batch_size=_EVAL_BATCH_SIZE)

  model = _build_keras_model()
  model.fit(
      train_dataset,
      steps_per_epoch=fn_args.train_steps,
      validation_data=eval_dataset,
      validation_steps=fn_args.eval_steps)

  # The result of the training should be saved in `fn_args.serving_model_dir`
  # directory.
  model.save(fn_args.serving_model_dir, save_format='tf')
Writing penguin_trainer.py

Now you have completed all preparation steps to build a TFX pipeline.

Write a pipeline definition

We define a function to create a TFX pipeline. A Pipeline object represents a TFX pipeline which can be run using one of pipeline orchestration systems that TFX supports.

def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,
                     module_file: str, serving_model_dir: str,
                     metadata_path: str) -> tfx.dsl.Pipeline:
  """Creates a three component penguin pipeline with TFX."""
  # Brings data into the pipeline.
  example_gen = tfx.components.CsvExampleGen(input_base=data_root)

  # Uses user-provided Python function that trains a model.
  trainer = tfx.components.Trainer(
      module_file=module_file,
      examples=example_gen.outputs['examples'],
      train_args=tfx.proto.TrainArgs(num_steps=100),
      eval_args=tfx.proto.EvalArgs(num_steps=5))

  # Pushes the model to a filesystem destination.
  pusher = tfx.components.Pusher(
      model=trainer.outputs['model'],
      push_destination=tfx.proto.PushDestination(
          filesystem=tfx.proto.PushDestination.Filesystem(
              base_directory=serving_model_dir)))

  # Following three components will be included in the pipeline.
  components = [
      example_gen,
      trainer,
      pusher,
  ]

  return tfx.dsl.Pipeline(
      pipeline_name=pipeline_name,
      pipeline_root=pipeline_root,
      metadata_connection_config=tfx.orchestration.metadata
      .sqlite_metadata_connection_config(metadata_path),
      components=components)

Run the pipeline

TFX supports multiple orchestrators to run pipelines. In this tutorial we will use LocalDagRunner which is included in the TFX Python package and runs pipelines on local environment. We often call TFX pipelines "DAGs" which stands for directed acyclic graph.

LocalDagRunner provides fast iterations for developemnt and debugging. TFX also supports other orchestrators including Kubeflow Pipelines and Apache Airflow which are suitable for production use cases.

See TFX on Cloud AI Platform Pipelines or TFX Airflow Tutorial to learn more about other orchestration systems.

Now we create a LocalDagRunner and pass a Pipeline object created from the function we already defined.

The pipeline runs directly and you can see logs for the progress of the pipeline including ML model training.

tfx.orchestration.LocalDagRunner().run(
  _create_pipeline(
      pipeline_name=PIPELINE_NAME,
      pipeline_root=PIPELINE_ROOT,
      data_root=DATA_ROOT,
      module_file=_trainer_module_file,
      serving_model_dir=SERVING_MODEL_DIR,
      metadata_path=METADATA_PATH))
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_trainer.py' (including modules: ['penguin_trainer']).
INFO:absl:User module package has hash fingerprint version a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmph8or6lr5/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmpkgch03yv', '--dist-dir', '/tmp/tmpsver_fma']
INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl'; target user module is 'penguin_trainer'.
INFO:absl:Full user module path is 'penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl'
INFO:absl:Running pipeline:
 pipeline_info {
  id: "penguin-simple"
}
nodes {
  pipeline_node {
    node_info {
      type {
        name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
      }
      id: "CsvExampleGen"
    }
    contexts {
      contexts {
        type {
          name: "pipeline"
        }
        name {
          field_value {
            string_value: "penguin-simple"
          }
        }
      }
      contexts {
        type {
          name: "pipeline_run"
        }
        name {
          field_value {
            string_value: "2021-09-30T02:03:47.657543"
          }
        }
      }
      contexts {
        type {
          name: "node"
        }
        name {
          field_value {
            string_value: "penguin-simple.CsvExampleGen"
          }
        }
      }
    }
    outputs {
      outputs {
        key: "examples"
        value {
          artifact_spec {
            type {
              name: "Examples"
              properties {
                key: "span"
                value: INT
              }
              properties {
                key: "split_names"
                value: STRING
              }
              properties {
                key: "version"
                value: INT
              }
            }
          }
        }
      }
    }
    parameters {
      parameters {
        key: "input_base"
        value {
          field_value {
            string_value: "/tmp/tfx-datapv4iv0sk"
          }
        }
      }
      parameters {
        key: "input_config"
        value {
          field_value {
            string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
          }
        }
      }
      parameters {
        key: "output_config"
        value {
          field_value {
            string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
          }
        }
      }
      parameters {
        key: "output_data_format"
        value {
          field_value {
            int_value: 6
          }
        }
      }
      parameters {
        key: "output_file_format"
        value {
          field_value {
            int_value: 5
          }
        }
      }
    }
    downstream_nodes: "Trainer"
    execution_options {
      caching_options {
      }
    }
  }
}
nodes {
  pipeline_node {
    node_info {
      type {
        name: "tfx.components.trainer.component.Trainer"
      }
      id: "Trainer"
    }
    contexts {
      contexts {
        type {
          name: "pipeline"
        }
        name {
          field_value {
            string_value: "penguin-simple"
          }
        }
      }
      contexts {
        type {
          name: "pipeline_run"
        }
        name {
          field_value {
            string_value: "2021-09-30T02:03:47.657543"
          }
        }
      }
      contexts {
        type {
          name: "node"
        }
        name {
          field_value {
            string_value: "penguin-simple.Trainer"
          }
        }
      }
    }
    inputs {
      inputs {
        key: "examples"
        value {
          channels {
            producer_node_query {
              id: "CsvExampleGen"
            }
            context_queries {
              type {
                name: "pipeline"
              }
              name {
                field_value {
                  string_value: "penguin-simple"
                }
              }
            }
            context_queries {
              type {
                name: "pipeline_run"
              }
              name {
                field_value {
                  string_value: "2021-09-30T02:03:47.657543"
                }
              }
            }
            context_queries {
              type {
                name: "node"
              }
              name {
                field_value {
                  string_value: "penguin-simple.CsvExampleGen"
                }
              }
            }
            artifact_query {
              type {
                name: "Examples"
              }
            }
            output_key: "examples"
          }
        }
      }
    }
    outputs {
      outputs {
        key: "model"
        value {
          artifact_spec {
            type {
              name: "Model"
            }
          }
        }
      }
      outputs {
        key: "model_run"
        value {
          artifact_spec {
            type {
              name: "ModelRun"
            }
          }
        }
      }
    }
    parameters {
      parameters {
        key: "custom_config"
        value {
          field_value {
            string_value: "null"
          }
        }
      }
      parameters {
        key: "eval_args"
        value {
          field_value {
            string_value: "{\n  \"num_steps\": 5\n}"
          }
        }
      }
      parameters {
        key: "module_path"
        value {
          field_value {
            string_value: "penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl"
          }
        }
      }
      parameters {
        key: "train_args"
        value {
          field_value {
            string_value: "{\n  \"num_steps\": 100\n}"
          }
        }
      }
    }
    upstream_nodes: "CsvExampleGen"
    downstream_nodes: "Pusher"
    execution_options {
      caching_options {
      }
    }
  }
}
nodes {
  pipeline_node {
    node_info {
      type {
        name: "tfx.components.pusher.component.Pusher"
      }
      id: "Pusher"
    }
    contexts {
      contexts {
        type {
          name: "pipeline"
        }
        name {
          field_value {
            string_value: "penguin-simple"
          }
        }
      }
      contexts {
        type {
          name: "pipeline_run"
        }
        name {
          field_value {
            string_value: "2021-09-30T02:03:47.657543"
          }
        }
      }
      contexts {
        type {
          name: "node"
        }
        name {
          field_value {
            string_value: "penguin-simple.Pusher"
          }
        }
      }
    }
    inputs {
      inputs {
        key: "model"
        value {
          channels {
            producer_node_query {
              id: "Trainer"
            }
            context_queries {
              type {
                name: "pipeline"
              }
              name {
                field_value {
                  string_value: "penguin-simple"
                }
              }
            }
            context_queries {
              type {
                name: "pipeline_run"
              }
              name {
                field_value {
                  string_value: "2021-09-30T02:03:47.657543"
                }
              }
            }
            context_queries {
              type {
                name: "node"
              }
              name {
                field_value {
                  string_value: "penguin-simple.Trainer"
                }
              }
            }
            artifact_query {
              type {
                name: "Model"
              }
            }
            output_key: "model"
          }
        }
      }
    }
    outputs {
      outputs {
        key: "pushed_model"
        value {
          artifact_spec {
            type {
              name: "PushedModel"
            }
          }
        }
      }
    }
    parameters {
      parameters {
        key: "custom_config"
        value {
          field_value {
            string_value: "null"
          }
        }
      }
      parameters {
        key: "push_destination"
        value {
          field_value {
            string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-simple\"\n  }\n}"
          }
        }
      }
    }
    upstream_nodes: "Trainer"
    execution_options {
      caching_options {
      }
    }
  }
}
runtime_spec {
  pipeline_root {
    field_value {
      string_value: "pipelines/penguin-simple"
    }
  }
  pipeline_run_id {
    field_value {
      string_value: "2021-09-30T02:03:47.657543"
    }
  }
}
execution_mode: SYNC
deployment_config {
  type_url: "type.googleapis.com/tfx.orchestration.IntermediateDeploymentConfig"
  value: "\n\236\001\n\rCsvExampleGen\022\214\001\nHtype.googleapis.com/tfx.orchestration.executable_spec.BeamExecutableSpec\022@\n>\n<tfx.components.example_gen.csv_example_gen.executor.Executor\n\206\001\n\006Pusher\022|\nOtype.googleapis.com/tfx.orchestration.executable_spec.PythonClassExecutableSpec\022)\n\'tfx.components.pusher.executor.Executor\n\220\001\n\007Trainer\022\204\001\nOtype.googleapis.com/tfx.orchestration.executable_spec.PythonClassExecutableSpec\0221\n/tfx.components.trainer.executor.GenericExecutor\022\230\001\n\rCsvExampleGen\022\206\001\nOtype.googleapis.com/tfx.orchestration.executable_spec.PythonClassExecutableSpec\0223\n1tfx.components.example_gen.driver.FileBasedDriver*]\n0type.googleapis.com/ml_metadata.ConnectionConfig\022)\032\'\n#metadata/penguin-simple/metadata.db\020\003"
}

INFO:absl:Using deployment config:
 executor_specs {
  key: "CsvExampleGen"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor"
      }
    }
  }
}
executor_specs {
  key: "Pusher"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.pusher.executor.Executor"
    }
  }
}
executor_specs {
  key: "Trainer"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.trainer.executor.GenericExecutor"
    }
  }
}
custom_driver_specs {
  key: "CsvExampleGen"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.example_gen.driver.FileBasedDriver"
    }
  }
}
metadata_connection_config {
  sqlite {
    filename_uri: "metadata/penguin-simple/metadata.db"
    connection_mode: READWRITE_OPENCREATE
  }
}

INFO:absl:Using connection config:
 sqlite {
  filename_uri: "metadata/penguin-simple/metadata.db"
  connection_mode: READWRITE_OPENCREATE
}

INFO:absl:Component CsvExampleGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-simple"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-09-30T02:03:47.657543"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-simple.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-datapv4iv0sk"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
WARNING: Logging before InitGoogleLogging() is written to STDERR
I0930 02:03:47.677845 15951 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I0930 02:03:47.684471 15951 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I0930 02:03:47.691339 15951 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I0930 02:03:47.697971 15951 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:select span and version = (0, None)
INFO:absl:latest span and version = (0, None)
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 1
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying penguin_trainer.py -> build/lib
installing to /tmp/tmpkgch03yv
running install
running install_lib
copying build/lib/penguin_trainer.py -> /tmp/tmpkgch03yv
running install_egg_info
running egg_info
creating tfx_user_code_Trainer.egg-info
writing tfx_user_code_Trainer.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
Copying tfx_user_code_Trainer.egg-info to /tmp/tmpkgch03yv/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3.7.egg-info
running install_scripts
creating /tmp/tmpkgch03yv/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/WHEEL
creating '/tmp/tmpsver_fma/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl' and adding '/tmp/tmpkgch03yv' to it
adding 'penguin_trainer.py'
adding 'tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/METADATA'
adding 'tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/WHEEL'
adding 'tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/top_level.txt'
adding 'tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/RECORD'
removing /tmp/tmpkgch03yv
I0930 02:03:47.747694 15951 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-simple/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1632967427,sum_checksum:1632967427"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-09-30T02:03:47.657543:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}), exec_properties={'output_config': '{\n  "split_config": {\n    "splits": [\n      {\n        "hash_buckets": 2,\n        "name": "train"\n      },\n      {\n        "hash_buckets": 1,\n        "name": "eval"\n      }\n    ]\n  }\n}', 'input_config': '{\n  "splits": [\n    {\n      "name": "single_split",\n      "pattern": "*"\n    }\n  ]\n}', 'input_base': '/tmp/tfx-datapv4iv0sk', 'output_data_format': 6, 'output_file_format': 5, 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:25648,xor_checksum:1632967427,sum_checksum:1632967427'}, execution_output_uri='pipelines/penguin-simple/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-simple/CsvExampleGen/.system/stateful_working_dir/2021-09-30T02:03:47.657543', tmp_dir='pipelines/penguin-simple/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-simple"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-09-30T02:03:47.657543"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-simple.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-datapv4iv0sk"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-simple"
, pipeline_run_id='2021-09-30T02:03:47.657543')
INFO:absl:Generating examples.
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
INFO:absl:Processing input csv data /tmp/tfx-datapv4iv0sk/* to TFExample.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
INFO:absl:Examples generated.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 1 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-simple/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1632967427,sum_checksum:1632967427"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-09-30T02:03:47.657543:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.2.0"
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}) for execution 1
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component CsvExampleGen is finished.
INFO:absl:Component Trainer is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.trainer.component.Trainer"
  }
  id: "Trainer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-simple"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-09-30T02:03:47.657543"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-simple.Trainer"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-simple"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-09-30T02:03:47.657543"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-simple.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
    }
  }
}
outputs {
  outputs {
    key: "model"
    value {
      artifact_spec {
        type {
          name: "Model"
        }
      }
    }
  }
  outputs {
    key: "model_run"
    value {
      artifact_spec {
        type {
          name: "ModelRun"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "eval_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 5\n}"
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl"
      }
    }
  }
  parameters {
    key: "train_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 100\n}"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
INFO:absl:MetadataStore with DB connection initialized
I0930 02:03:48.882774 15951 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution 2
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=2, input_dict={'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-simple/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1632967427,sum_checksum:1632967427"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-09-30T02:03:47.657543:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.2.0"
  }
}
state: LIVE
create_time_since_epoch: 1632967428866
last_update_time_since_epoch: 1632967428866
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}, output_dict=defaultdict(<class 'list'>, {'model': [Artifact(artifact: uri: "pipelines/penguin-simple/Trainer/model/2"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-09-30T02:03:47.657543:Trainer:model:0"
  }
}
, artifact_type: name: "Model"
)], 'model_run': [Artifact(artifact: uri: "pipelines/penguin-simple/Trainer/model_run/2"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-09-30T02:03:47.657543:Trainer:model_run:0"
  }
}
, artifact_type: name: "ModelRun"
)]}), exec_properties={'eval_args': '{\n  "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl', 'custom_config': 'null', 'train_args': '{\n  "num_steps": 100\n}'}, execution_output_uri='pipelines/penguin-simple/Trainer/.system/executor_execution/2/executor_output.pb', stateful_working_dir='pipelines/penguin-simple/Trainer/.system/stateful_working_dir/2021-09-30T02:03:47.657543', tmp_dir='pipelines/penguin-simple/Trainer/.system/executor_execution/2/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.trainer.component.Trainer"
  }
  id: "Trainer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-simple"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-09-30T02:03:47.657543"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-simple.Trainer"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-simple"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-09-30T02:03:47.657543"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-simple.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
    }
  }
}
outputs {
  outputs {
    key: "model"
    value {
      artifact_spec {
        type {
          name: "Model"
        }
      }
    }
  }
  outputs {
    key: "model_run"
    value {
      artifact_spec {
        type {
          name: "ModelRun"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "eval_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 5\n}"
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl"
      }
    }
  }
  parameters {
    key: "train_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 100\n}"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-simple"
, pipeline_run_id='2021-09-30T02:03:47.657543')
INFO:absl:Train on the 'train' split when train_args.splits is not set.
INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set.
INFO:absl:udf_utils.get_fn {'eval_args': '{\n  "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl', 'custom_config': 'null', 'train_args': '{\n  "num_steps": 100\n}'} 'run_fn'
INFO:absl:Installing 'pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpxlz63y_2', 'pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl']
Processing ./pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl
INFO:absl:Successfully installed 'pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl'.
INFO:absl:Training model.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
Installing collected packages: tfx-user-code-Trainer
Successfully installed tfx-user-code-Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Model: "model"
INFO:absl:__________________________________________________________________________________________________
INFO:absl:Layer (type)                    Output Shape         Param #     Connected to                     
INFO:absl:==================================================================================================
INFO:absl:culmen_length_mm (InputLayer)   [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:culmen_depth_mm (InputLayer)    [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:flipper_length_mm (InputLayer)  [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:body_mass_g (InputLayer)        [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:concatenate (Concatenate)       (None, 4)            0           culmen_length_mm[0][0]           
INFO:absl:                                                                 culmen_depth_mm[0][0]            
INFO:absl:                                                                 flipper_length_mm[0][0]          
INFO:absl:                                                                 body_mass_g[0][0]                
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense (Dense)                   (None, 8)            40          concatenate[0][0]                
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_1 (Dense)                 (None, 8)            72          dense[0][0]                      
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_2 (Dense)                 (None, 3)            27          dense_1[0][0]                    
INFO:absl:==================================================================================================
INFO:absl:Total params: 139
INFO:absl:Trainable params: 139
INFO:absl:Non-trainable params: 0
INFO:absl:__________________________________________________________________________________________________
100/100 [==============================] - 1s 3ms/step - loss: 0.5703 - sparse_categorical_accuracy: 0.7815 - val_loss: 0.2250 - val_sparse_categorical_accuracy: 0.8800
2021-09-30 02:03:53.440001: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: pipelines/penguin-simple/Trainer/model/2/Format-Serving/assets
INFO:tensorflow:Assets written to: pipelines/penguin-simple/Trainer/model/2/Format-Serving/assets
INFO:absl:Training complete. Model written to pipelines/penguin-simple/Trainer/model/2/Format-Serving. ModelRun written to pipelines/penguin-simple/Trainer/model_run/2
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 2 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'model': [Artifact(artifact: uri: "pipelines/penguin-simple/Trainer/model/2"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-09-30T02:03:47.657543:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.2.0"
  }
}
, artifact_type: name: "Model"
)], 'model_run': [Artifact(artifact: uri: "pipelines/penguin-simple/Trainer/model_run/2"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-09-30T02:03:47.657543:Trainer:model_run:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.2.0"
  }
}
, artifact_type: name: "ModelRun"
)]}) for execution 2
INFO:absl:MetadataStore with DB connection initialized
I0930 02:03:53.959393 15951 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Trainer is finished.
I0930 02:03:53.963246 15951 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Pusher is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.pusher.component.Pusher"
  }
  id: "Pusher"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-simple"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-09-30T02:03:47.657543"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-simple.Pusher"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-simple"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-09-30T02:03:47.657543"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-simple.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
}
outputs {
  outputs {
    key: "pushed_model"
    value {
      artifact_spec {
        type {
          name: "PushedModel"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "push_destination"
    value {
      field_value {
        string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-simple\"\n  }\n}"
      }
    }
  }
}
upstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
INFO:absl:MetadataStore with DB connection initialized
I0930 02:03:53.983208 15951 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution 3
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'model': [Artifact(artifact: id: 2
type_id: 17
uri: "pipelines/penguin-simple/Trainer/model/2"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-09-30T02:03:47.657543:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.2.0"
  }
}
state: LIVE
create_time_since_epoch: 1632967433966
last_update_time_since_epoch: 1632967433966
, artifact_type: id: 17
name: "Model"
)]}, output_dict=defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-simple/Pusher/pushed_model/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-09-30T02:03:47.657543:Pusher:pushed_model:0"
  }
}
, artifact_type: name: "PushedModel"
)]}), exec_properties={'custom_config': 'null', 'push_destination': '{\n  "filesystem": {\n    "base_directory": "serving_model/penguin-simple"\n  }\n}'}, execution_output_uri='pipelines/penguin-simple/Pusher/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-simple/Pusher/.system/stateful_working_dir/2021-09-30T02:03:47.657543', tmp_dir='pipelines/penguin-simple/Pusher/.system/executor_execution/3/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.pusher.component.Pusher"
  }
  id: "Pusher"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-simple"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-09-30T02:03:47.657543"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-simple.Pusher"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-simple"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-09-30T02:03:47.657543"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-simple.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
}
outputs {
  outputs {
    key: "pushed_model"
    value {
      artifact_spec {
        type {
          name: "PushedModel"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "push_destination"
    value {
      field_value {
        string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-simple\"\n  }\n}"
      }
    }
  }
}
upstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-simple"
, pipeline_run_id='2021-09-30T02:03:47.657543')
WARNING:absl:Pusher is going to push the model without validation. Consider using Evaluator or InfraValidator in your pipeline.
INFO:absl:Model version: 1632967434
INFO:absl:Model written to serving path serving_model/penguin-simple/1632967434.
INFO:absl:Model pushed to pipelines/penguin-simple/Pusher/pushed_model/3.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 3 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-simple/Pusher/pushed_model/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-simple:2021-09-30T02:03:47.657543:Pusher:pushed_model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.2.0"
  }
}
, artifact_type: name: "PushedModel"
)]}) for execution 3
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component Pusher is finished.
I0930 02:03:54.011859 15951 rdbms_metadata_access_object.cc:686] No property is defined for the Type

You should see "INFO:absl:Component Pusher is finished." at the end of the logs if the pipeline finished successfully. Because Pusher component is the last component of the pipeline.

The pusher component pushes the trained model to the SERVING_MODEL_DIR which is the serving_model/penguin-simple directory if you did not change the variables in the previous steps. You can see the result from the file browser in the left-side panel in Colab, or using the following command:

# List files in created model directory.
find {SERVING_MODEL_DIR}
serving_model/penguin-simple
serving_model/penguin-simple/1632967434
serving_model/penguin-simple/1632967434/assets
serving_model/penguin-simple/1632967434/saved_model.pb
serving_model/penguin-simple/1632967434/keras_metadata.pb
serving_model/penguin-simple/1632967434/variables
serving_model/penguin-simple/1632967434/variables/variables.index
serving_model/penguin-simple/1632967434/variables/variables.data-00000-of-00001

Next steps

You can find more resources on https://www.tensorflow.org/tfx/tutorials

Please see Understanding TFX Pipelines to learn more about various concepts in TFX.