# tensorflow::ops::Dequantize

`#include <array_ops.h>`

Dequantize the 'input' tensor into a float Tensor.

## Summary

[min_range, max_range] are scalar floats that specify the range for the output. The 'mode' attribute controls exactly which calculations are used to convert the float values to their quantized equivalents.

In 'MIN_COMBINED' mode, each value of the tensor will undergo the following:

```if T == qint8: in[i] += (range(T) + 1)/ 2.0
out[i] = min_range + (in[i]* (max_range - min_range) / range(T))
```
here `range(T) = numeric_limits::max() - numeric_limits::min()`

MIN_COMBINED Mode Example

If the input comes from a QuantizedRelu6, the output type is quint8 (range of 0-255) but the possible range of QuantizedRelu6 is 0-6. The min_range and max_range values are therefore 0.0 and 6.0. Dequantize on quint8 will take each value, cast to float, and multiply by 6 / 255. Note that if quantizedtype is qint8, the operation will additionally add each value by 128 prior to casting.

If the mode is 'MIN_FIRST', then this approach is used:

```num_discrete_values = 1 << (# of bits in T)
range_adjust = num_discrete_values / (num_discrete_values - 1)
range = (range_max - range_min) * range_adjust
range_scale = range / num_discrete_values
const double offset_input = static_cast(input) - lowest_quantized;
result = range_min + ((input - numeric_limits::min()) * range_scale)
```

If the mode is `SCALED`, dequantization is performed by multiplying each input value by a scaling_factor. (Thus an input of 0 always maps to 0.0).

The scaling_factor is determined from `min_range`, `max_range`, and `narrow_range` in a way that is compatible with `QuantizeAndDequantize{V2|V3}` and `QuantizeV2`, using the following algorithm:

```

const int min_expected_T = std::numeric_limits::min() +
(narrow_range ? 1 : 0);
const int max_expected_T = std::numeric_limits::max();
const float max_expected_T = std::numeric_limits::max();

const float scale_factor =
(std::numeric_limits::min() == 0) ? (max_range / max_expected_T)
: std::max(min_range / min_expected_T,
max_range / max_expected_T);

Arguments:
scope: A Scope object
min_range: The minimum scalar value possibly produced for the input.
max_range: The maximum scalar value possibly produced for the input.

Returns:
`Output`: The output tensor.

Constructors and Destructors

`Dequantize(const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input min_range, ::tensorflow::Input max_range)`

`Dequantize(const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input min_range, ::tensorflow::Input max_range, const Dequantize::Attrs & attrs)`

Public attributes

`operation`

`Operation`

`output`

`::tensorflow::Output`

Public functions

`node() const `

`::tensorflow::Node *`

`operator::tensorflow::Input() const `

```
``````
```

`operator::tensorflow::Output() const `

```
``````
```

Public static functions

`Axis(int64 x)`

`Attrs`

`Mode(StringPiece x)`

`Attrs`

`NarrowRange(bool x)`

`Attrs`

Structs

tensorflow::ops::Dequantize::Attrs

Optional attribute setters for Dequantize.

Public attributes

operation
Operation operation

output
::tensorflow::Output output

Public functions

Dequantize
Dequantize(
const ::tensorflow::Scope & scope,
::tensorflow::Input input,
::tensorflow::Input min_range,
::tensorflow::Input max_range
)

Dequantize
Dequantize(
const ::tensorflow::Scope & scope,
::tensorflow::Input input,
::tensorflow::Input min_range,
::tensorflow::Input max_range,
const Dequantize::Attrs & attrs
)

node
::tensorflow::Node * node() const

operator::tensorflow::Input
operator::tensorflow::Input() const

operator::tensorflow::Output
operator::tensorflow::Output() const

Public static functions

Axis
Attrs Axis(
int64 x
)

Mode
Attrs Mode(
StringPiece x
)

NarrowRange
Attrs NarrowRange(
bool x
)

```