ML Community Day is November 9! Join us for updates from TensorFlow, JAX, and more Learn more


View source on GitHub

Computes the cosine similarity between labels and predictions.

Note that it is a negative quantity between -1 and 0, where 0 indicates orthogonality and values closer to -1 indicate greater similarity. This makes it usable as a loss function in a setting where you try to maximize the proximity between predictions and targets.

loss = -sum(y_true * y_pred)

y_true Tensor of true targets.
y_pred Tensor of predicted targets.
axis Axis along which to determine similarity.

Cosine similarity tensor.